You could be based in a university, Synthetic Route of 126456-43-7, combining chemical research with teaching; in a pharmaceutical company, working on developing and trialing new drugs; or in a public-sector research center, helping to ensure national healthcare provision keeps pace with new discoveries. 126456-43-7, name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol. In an article,Which mentioned a new discovery about 126456-43-7
Aspartic proteases (APs) are a class of enzymes engaged in the proteolytic digestion of peptide substrates. APs play important roles in physiological and infectious pathways, making them plausible drug targets. For instance in the treatment of HIV infections, access to an efficient combination of protease and reverse transcriptase inhibitors have changed a terminal illness to a chronic but manageable disease. However, the benefits have been limited due to the emergence of drug resistant viral strains, poor pharmacokinetic properties of peptidomimetic inhibitors and adverse effects associated with the treatment. In the 1980s, D. Rich and co-workers proposed a novel strategy for the development of AP inhibitors by replacing the secondary hydroxyl group with a tertiary alcohol as part of the transition state (TS) mimicking moiety. This strategy has been extensively explored over the last decade with a common belief that masking of the polar group, e.g. by intramolecular hydrogen bonding, has the potential to enhance transcellular transport. This is the first review presenting the advances of AP inhibitors comprising a tertiary hydroxyl group. The inhibitors have been classified into different tert-hydroxy TS mimics and their design strategies, synthesis, biological activities, structure-activity-relationships and X-ray structures are discussed.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 126456-43-7.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis