The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis.I hope my blog about 108-47-4 is helpful to your research. name: 2,4-Dimethylpyridine
The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing quantitative kinetic, and their interactions with reaction intermediates and transition states. In an article, 108-47-4, name is 2,4-Dimethylpyridine, introducing its new discovery. name: 2,4-Dimethylpyridine
Three previously unreported forms of complexes of CuI with a pyridine derivative have been isolated and examined by single-crystal X-ray techniques: (1) (3Me-py = 3-methylpyridine), stoicheiometry 1:1:2, monoclinic space group P21, a=7.912(2), b=19.390(6), c=8.774(2) Angstroem, beta=102.22(2)o, Z=2, R=0.047 for 2072 observed reflections, crystallizes with isolated rhombohedra of Cu2I2, each Cu being co-ordinated to two ligand molecules via nitrogen atoms; <> (2) and <> (3) (2,4Me2-py = 2,4-dimethylpyridine), stoicheiometries 1:1:1, (2), monoclinic space group P21/a, a=11.834(5), b=14,914(6), c=4.381(2) Angstroem, beta=93.80(4)o, Z=4, R=0.078 for 1082 reflections, (3), triclinic space group P1, a=11.648(8), b=4.328(3), c=10.198(4) Angstroem, alpha=77.64(5), beta=68.45(4), gamma=104.25(5)o, R=0.063 for 1731 reflections.Both (2) and (3) crystallize as edge-sharing Cu2I2 rhombs, with each copper atom bound to three iodide atoms and the nitrogen atom of a molecule of the Lewis base.
The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis.I hope my blog about 108-47-4 is helpful to your research. name: 2,4-Dimethylpyridine
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis