Analyzing the synthesis route of 31886-58-5

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 119139-23-0

119139-23-0 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione 2399, achiral-nitrogen-ligands compound, is more and more widely used in various.

119139-23-0, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 27 40 mg of a 60% suspension of sodium hydride in mineral oil was added to a solution of 327 mg of 3,4-bis-(3-indolyl)-1H-pyrrole-2,5-dione in 5 ml of DMF at 0 C. under nitrogen. After 0.5 hour the mixture was cooled to -20 C. and 108 mg of trimethylsilyl chloride were added. The mixture was allowed to warm to room temperature, then cooled to 0 C. and then a further 80 mg of sodium hydride were added thereto. After 0.5 hour at 0 C. 116 mg of propylene oxide were added and the mixture was stirred overnight. 5 ml of water were added and the mixture was extracted with dichloromethane. The organic phase was dried and evaporated. The residue was purified on silica gel with ethyl acetate/petroleum ether. Recrystallization from diethyl ether/petroleum ether gave 30 mg of 3,4-bis[1-(2-hydroxypropyl)-3-indolyl]-1H-pyrrole-2,5-dione, m.p. 133-135 C.

119139-23-0 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione 2399, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

LiBEt3H (1 mL, 1.0 M in THF, 1 mmol) and Me6TREN (0.26 mL,1 mmol) were added to 5 mL of hexane, precipitating a white powder.THF was slowly added dropwise with stirring until a homogeneoussolution was obtained (approx. 3 mL) Cooling of the solutionat 30 C yielded X-ray quality colorless crystals (225 mg, 67%).1H NMR (400.1 MHz, C6D6, 300 K): delta 2.06 (s, 18H, Me6TREN Me),1.86 (t, 6H, 3JHH = 4.95 Hz, Me6TREN CH2), 1.78 (t, 6H, 3JHH = 4.95 Hz,Me6TREN CH2), 1.54 (t, 9H, 3JHH = 7.43 Hz, BCH2CH3), 0.95 ppm(q, 6H, 3JHH = 7.43 Hz, BCH2CH3).13C NMR (100.6 MHz, C6D6, 300 K): delta 57.2 (Me6TREN CH2), 50.6(Me6TREN CH2), 45.7 (Me6TREN Me), 16.7 (m, 1JBC = 41.5 Hz,BCH2CH3), 14.2 ppm (BCH2CH3).7Li NMR (155.5 MHz, C6D6, 300 K): delta 0.18 ppm.11B NMR (128.3 MHz, C6D6, 300 K): delta 11.3 ppm (broad singlet).Elemental analysis for C18H46N4LiB: Calc.: C, 64.28; H, 13.79; N,16.66. Found: C, 64.24; H, 13.49; N, 16.75%.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of tris(2-dimethylaminoethyl)amine (0.403 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromohexadecane (1.63 g, 5.35 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T-16,16,16 (1.67 g, 84%) as a white powder; mp=229-258 C; ?H NMR (300 MI-Tz, CDC13) oe 4.11-4.02 (m, 6H), 3.64-3.55 (m, 6H), 3.45-3.37 (m, 6H), 3.35(s, 18H), 1.78-1.66 (m, 6H), 1.40-1.18 (m, 78H), 0.88-0.81 (m, 9H); high resolution mass spectrum (ESI) m/z 302.0073 ([Mj3 calculated for [C6oH,29N4j3: 302.0067). ?H spectmm of compound T-16,16,16 can be found in Figure 54.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Mixturing of Co(CH3COO)24H2O (57 mg, 0,23 mmol) and Me6TREN (in excess) was followed by sonication until all the pink cobalt salt was transformed into a bright green oil. The excess of ligand was washed away with diethyl ether.

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

2.1 Preparation of [Co(Me6tren)Cl](ClO4) Analytical grade (Sigma-Aldrich) chemicals were used without further purification. The complex [Co(Me6tren)Cl](ClO4) has been prepared by the published recipe [32] : CoCl2¡¤6H2O (0.200 g, 0.84 mmol) was dissolved in EtOH (20 cm3) at 55 C. Me6tren (0.214 g, 0.92 mmol) dissolved in EtOH (10 cm3) was added dropwise with stirring, forming a blue solution that was stirred overnight at room temperature. NaClO4¡¤4H2O (0.118 g, 0.84 mmol) was added with stirring inducting precipitation of pale blue [Co(Me6tren)Cl](ClO4) (0.237 g, 67%) which was separated by filtration and dried on air. Anal. Calc. for C12H30CoN4O4Cl2: C, 34.11; H, 7.16; N, 13.27. Found: C, 34.36; H, 7.21; N, 13.28%.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Article; Packova, Alena; Miklovi?, Jozef; Bo?a, Roman; Polyhedron; vol. 102; (2015); p. 88 – 93;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

General procedure: LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 33527-91-2

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: To a cooled to 0 C suspension consisting of N,N’-dimethyl-1,2-ethylenediamine (4.4 g, 0.05 mol), sodium bicarbonate (33.6 g, 0.40 mol), and CH2Cl2 (50 mL), a solution of 2-bromopropionyl chloride (1a) (25.7 g, 0.15 mol) in CH2Cl2 (40 mL) was added. The reaction temperature was maintained within 0-5 C and the addition time was 40 min. The mixture was stirred for 4 h at the same temperature. Water (130 mL) and CH2Cl2 (60 mL) were added and the organic layer was separated. The combined organic fractions were dried over sodium sulfate. The solvent was removed under reduced pressure. The residue was treated with hexane (30 mL) and a solid product was filtered off and recrystallized from diethyl ether to give pure compound 2a (13.25 g, 74%), m.p. 77.0-77.4 C (from diethyl ether).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Goncharova; Yakushchenko; Raevskaya; Yakushchenko; Konovalova; Russian Chemical Bulletin; vol. 68; 1; (2019); p. 181 – 185; Izv. Akad. Nauk, Ser. Khim.; 1; (2019); p. 181 – 185,5;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis