Some tips on N1,N2-Dimethylethane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

To a solution of N,N’-dimethylethylenediamine (1.61 gram, 18.26 mmol) in methanol (20 mL) was added dropwise a solution of 2-pyridinecarboxaldehyde (1.96 gram, 18.29 mmol) in methanol (10 mL). The reaction mixture was stirred at room temperature for 1 hour forming an orange solution. NaCNBH3 (3.5 grams, 55.7 mmol) was added followed by addition of trifluoroacetic acid (5 mL), and the solution was stirred for additional 3 hours. After neutralization with NaOH 4M solution, the crude product was extracted with 3 portions of dichloromethane (30 mL). The collected organic layer was dried over Na2S04 and solvent was removed under vacuum yielding a yellow oil in 95 % yield. (0466) 1H NMR (CDC13, 500 MHz): delta 8.54 (ddd, 1H, J=4.85Hz, J=1.85Hz, J=0.85Hz, ArH), 7.65 (td, 1H, J=7.65Hz, J=1.82Hz, ArH), 7.40 (d, 1H, J=7.84Hz, ArH), 7.16 (ddd, 1H, J=7.65Hz, J=4.80Hz, J=1.0Hz, ArH), 3.67 (s, 2H, Ar-CH2), 2.70 (t, 2H, J=6.25Hz, CH2), 2.60 (t, 2H, J=6.16Hz, CH2), 2.42 (s, 3H, CH3), 2.28 (s, 3H, CH3). (0467) 13C NMR (CDC13, 125 MHz): delta 159.61 (C), 149.25 (CH), 136.60 (CH), 123.13 (CH), 122.14 (CH), 64.26 (CH2), 56.97 (CH2), 49.44 (CH2), 42.81 (CH3), 36.50 (CH3). (0468) MS (ESI): Calc for Ci0Hi7N3: 179.3, found: 180.3 (MH+).

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

Reference£º
Patent; RAMOT AT TEL-AVIV UNIVERSITY LTD.; KOL, Moshe; ROSEN, Tomer; POPOWSKI, Yanay; (87 pag.)WO2017/137990; (2017); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

4.0 ml (5.2 mmol) of S-BuLi (1.3 M in cyclohexanone) are added dropwise at -78C with stirring to a solution of 1.29 g (5 mmol) of compound 15 in 5 ml of TBME. The temperature is then allowed to rise to room temperature and the mixture is stirred further for 1.5 h. The resulting suspension is then injected with elevated pressure (argon) through a cannula into a second vessel in which a solution of 0.44 ml (5 mmol) of PCI3 in 10 ml of TBME is stirred at -78C. After the addition, the temperature is allowed to rise to 00C, and the resulting suspension is stirred further for another 1.5 hours. After adding 10 ml of THF, reaction solution 1 comprising compound 16 is obtained.

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

To a solution of compound 9-3 (10 g, 36.5 mmol) in EtOH was added dropwise compound 9-3-1 (39 mL, 365 mmol) under nitrogen atmosphere at 0 C., and then the reaction solution was stirred at 20 C. for 2 h, followed by concentration. The residue was purified by column chromatography to give the title compound 9-4 (yellow solid, 5.5 g, Yield 56%). 1H NMR (400 MHz, CDCl3): delta ppm 8.16 (d, J=8.8 Hz, 2H), 7.59 (d, J=8.8 Hz, 2H), 3.80 (s, 1H), 3.60-3.80 (m, 1H), 3.15-3.30 (m, 1H), 3.00-3.10 (m, 1H), 2.93 (s, 3H), 2.60-2.75 (m, 1H), 2.15 (s, 3H).

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; Hubei Bio-Pharmaceutical Industrial Technological Institute Inc.; Humanwell Healthcare (Group) Co., Ltd.; Wang, Xuehai; Wu, Chengde; Xu, Yong; Shen, Chunli; Li, Li’e; Hu, Guoping; Yue, Yang; Li, Jian; Guo, Diliang; Shi, Nengyang; Huang, Lu; Chen, Shuhui; Tu, Ronghua; Yang, Zhongwen; Zhang, Xuwen; Xiao, Qiang; Tian, Hua; Yu, Yanping; Chen, Hailiang; Sun, Wenjie; He, Zhenyu; Shen, Jie; Yang, Jing; Tang, Jing; Zhou, Wen; Yu, Jing; Zhang, Yi; Liu, Quan; (251 pag.)US2017/313683; (2017); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

Weigh I (5.0g, 19.4mmol) in 100mL reaction flask, dissolved with 50.0mL of ether, Sec-butyllithium (44.9 mL, 58.3 mmol, 1.3 M) was added dropwise to the reaction flask under nitrogen atmosphere, Stirred at room temperature for 2h, Weigh diphenylphosphine chloride (4.2mL, 23.3mmol) was added dropwise to the reaction flask, Warmed to reflux, 4h after the reaction is completed, The reaction solution was poured into water to quench, Extraction with ethyl acetate, drying, Ethyl acetate was removed by rotary evaporation, Purification by column chromatography on residue gave 7.5 g of the target compound VIII, Yield: 87.4%, yellow solid. Mass spectral analysis MALDI-TOF-MS m / z: 441 (M +).

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Shanghai Maosheng Kanghui Technology Co., Ltd.; Jiang Xuefeng; Ying Yongcheng; Teng Haige; Chen Pei; (20 pag.)CN107286202; (2017); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione

119139-23-0 is used more and more widely, we look forward to future research findings about 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, and cas is 119139-23-0, its synthesis route is as follows.,119139-23-0

General procedure: A reaction flask equipped with a magnetic stirrer was charged with a solution of 3, 4-bisindolylmaleimide (2.1 g, 6.4 mmol) in 100 mL of acetone. Potassium hydroxide (0.40 g, 7.1 mmol) was added to the solution at 0 C and stirred for 0.5 h. Iodomethane (1.6 g, 0.011 mol) or 1-bromooctane (2.4 g, 0.012 mol) was added to the reaction mixture for 3, 4-bisindolyl-1-N-methylmaleimide or 3, 4-bisindolyl-1-N-(n-octyl)maleimide, respectively. The reaction mixture was warmed to room temperature and stirred for 1 h (iodomethane) or 24 h (1-bromooctane). The reaction mixture was concentrated and then dissolved in a mixture of ethyl acetate and water. The organic phase was separated, washed with water once and brine once, dried over anhydrous sodium sulfate. The product was purified by flash chromatography with petroleum ether, ethyl acetate and dichloromethane (V/V = 3:1:2) as eluent.

119139-23-0 is used more and more widely, we look forward to future research findings about 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione

Reference£º
Article; Zhang, Qianfeng; Chang, Guanjun; Zhang, Lin; Chinese Chemical Letters; vol. 29; 3; (2018); p. 513 – 516;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3 its synthesis route is as follows.,110-70-3

The mixture of N, N’-Dimethylene diamine 21-1 (5 mL, 46.5 mmol) and tert-butyl acrylate 13 mL (116 mmol) was heated at 85 C for 1 hour. Another 13 mL (116 mmol) of tert- butyl acrylate was added. The reaction mixture was continuely heated at 85C for 1 hour and stirred at room temperature overnight. The reaction mixture was concentrated in vacuo. The residue wasdiluted with hexanes and purified by flash column chromatography using SiliaSep Cartridges (120g), eluting with 0-5% methanol/DCM to give 10.1 g (62%) of compound 21-2. MS (ESI) m/z 345 [M+H].

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; AMBRX, INC.; MIAO, Zhenwei; ATKINSON, Kyle, C.; BIROC, Sandra; BUSS, Timothy; COOK, Melissa; KRAYNOV, Vadim; MARSDEN, Robin; PINKSTAFF, Jason; SKIDMORE, Lillian; SUN, Ying; SZYDLIK, Angieszka; VALENTA, Ianina; WO2012/166560; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

To a degassed solution of (R)-1 (662 mg, 2.57 mmol) in THF (3.2 mL) was added sec-BuLi (1.4 M in cyclohexane, 2 mL, 2.8 mmol) at 0 C. The resulting deep-red solution was stirred for an additional 3 h at the same temperature. To this reaction mixture was added a solution of ZnBr2 (1.3 M in THF, 2.38 mL, 3.09 mmol) at 0 C and stirring was continued at r.t. for 1 h. To a degassed solution of [Pd2dba3]¡¤CHCl3 (266 mg, 0.257 mmol) and tris(2,4-di-tert-butylphenyl)-phosphite (666 mg, 1.029 mmol) in THF (5.5 mL) was added a degassed solution of sulfide (S)- 4 (890 mg, 2.05 mmol) in THF (3 mL). The resulting dark purple solution was stirred for an additional 10 min at r.t. and was subsequently added dropwise to the previously prepared organozinc compound. The reaction mixture was heated to reflux under argon at 75 C for 18 h, and then cooled to r.t., quenched with H2O and extracted with ethyl acetate (3 ¡Á 200 mL). The combined organic layers were washed with brine (3 ¡Á 200 mL) and dried over MgSO4. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (silica, PE/EE/NEt3 = 20/10/1). The product (R,SFc,RFc)- 5 was obtained as an orange foam (yield: 687 mg, 59%). M.p.: 58-61 C. 1H NMR (400 MHz, CDCl3): delta 1.37 (d, J = 6.8 Hz, 3H, CH3CH), 1.61 (s, 6H, N(CH3)2), 2.20 (s, 3H, Ph-CH3), 3.65 (q, J = 6.8 Hz, 1H, CH3CH), 4.11 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H3), 4.27 (s, 5H, Cp?), 4.30 (dd, J1 = J2 = 2.4 Hz, 1H, H4), 4.35 (s, 5H, Cp?), 4.37 (dd, J1 = J2 = 2.5 Hz, 1H, H4?) 4.44 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H3? 4.59 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H5? 4.64 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H5), 6.88 (d, J = 8.1 Hz, 2H, Ph-meta), 7.02 (d, J = 8.1 Hz, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): delta 14.7 (CH3CH), 20.9 (Ph-CH3), 40.3 (2C, N(CH3)2), 55.4 (CH3CH), 66.1 (C4), 66.7 (C3), 67.9 (C4? 69.6 (5C, Cp’), 70.7 (5C, Cp?), 71.7 (C5? 72.4 (C5), 74.1 (C3? 89.8 (C2), 128.9 (2C, Ph-ortho), 129.1 (2C, Ph-meta), 135.1 (2C, Ph-ipso + Ph-para); 3 Cq (C1, C1? C2? were not observed. HR-MS (EI): m/z [M?]+ calcd. 563.1032 for C31H33Fe2NS; found: 563.1050. [alpha]lambda20 (nm): -660 (589), -746 (578), -1180 (546) (c 0.224, CHCl3).

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of N1,N2-Dimethylethane-1,2-diamine

110-70-3 is used more and more widely, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

EXAMPLE 12 N-Boc-N,N’-dimethylethylene diamine N,N’-dimethyl ethylenediamine (8.8 g) was dissolved in 200 ml tetrahydrofuran and to this was added over a 10 min period di-t-butyldicarbonate (4.36 g) in 30 mL tetrahydrofuran. 72 hours later, the solvent was evaporated and the residue partitioned between ether and KHCO3 and the organic layer was dried (MgSO4) and evaporated to give 11.6 g title compound (58% yield). 300 MHz 1 H NMR was consistent with proposed structure.

110-70-3 is used more and more widely, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; G. D. Searle & Co.; US4902706; (1990); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis