Downstream synthetic route of 119139-23-0

The synthetic route of 119139-23-0 has been constantly updated, and we look forward to future research findings.

119139-23-0, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

119139-23-0, EXAMPLE 14 820 mg of Lawesson’s reagent was added to a solution of 330 mg of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 50 ml of dimethoxyethane and the mixture was heated to reflux for 1 hour. 410 mg of Lawesson’s reagent were then added and the mixture was heated to reflux for a further 1 hour. The solvent was evaporated and the residue was purified on silica gel with ethyl acetate/hexane (1:4). Recrystallization from diethyl ether/hexane gave 30 mg of 5-thioxo-3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. 254-257 C.

The synthetic route of 119139-23-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on N1,N2-Dimethylethane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

1,4-Dimethyl-3-(4-nitrophenyl)piperazin-2-one (3); A 100-mL single-neck round-bottomed flask equipped with a magnetic stirrer was purged with nitrogen, charged with N1,N2-dimethylethane-1,2-diamine (1.61 g, 18.2 mmol), ethanol (5 mL) and 2 (500 mg, 1.82 mmol), and the reaction was stirred at room temperature for 1 h. After this time, the reaction mixture was evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography to afford an 89% yield (404 mg) of 3 as a yellow oil: 1H NMR (500 MHz, DMSO-d6) delta 8.18 (d, 2H, J=8.5 Hz), 7.60 (d, 2H, J=8.5 Hz), 3.87 (s, 1H), 3.61 (td, 1H, J=12.0, 4.0 Hz), 3.26 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 3.02 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 2.84 (s, 3H), 2.64 (td, 1H, J=12.0, 4.0 Hz), 2.06 (s, 3H).

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Zhao, Zhongdong; Zhichkin, Pavel E.; Stafford, Douglas G.; Kropf, Jeffrey E.; BLOMGREN, Peter A.; Currie, Kevin S.; Lee, Seung H.; Mitchell, Scott A.; Xu, Jianjun; Schmitt, Aaron C.; US2009/82330; (2009); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

(1) Raw material storage tanks 1,4 are respectively methyl tert-butyl ether solution of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine (mass fraction 15%) And n-hexane solution of n-butyllithium (2.7M), methyl t-butyl group of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine was controlled by a metering pump the flow rate of the ether solution was 50 mL/min, the flow rate of the n-hexane solution of n-butyllithium was 14 mL/min, and the thermostatic module injected into the microchannel reactor was thermostated at 25 C; after constant temperature treatment, the first mixing module of the microchannel reactor was introduced. The reaction was carried out at a reaction temperature of 25 C and a residence time of 10.7 s.(2) reacting the effluent of the first mixing module with diphenylphosphine chloride in a second mixing module, controlling the flow rate of diphenylphosphonium chloride to 7 mL/min by a metering pump, and the reaction temperature is 35 C, and residence time 9.8s.(3) The effluent of the microchannel reactor was acidified to neutral with concentrated hydrochloric acid, extracted with ethyl acetate, dried over anhydrous sodium sulfate and evaporated to give a brown solid N,N-dimethyl-(R)-1- [(S)-2-(diphenylphosphino)ferrocenyl]ethylamine crude,Recrystallization from ethanol gave a pale yellow solid N,N-dimethyl-(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine, N,N-dimethyl The mass ratio of the crude -(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine to ethanol was 1:5; the yield was 82.4%.

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Xi’an Modern Chemical Institute; Yang Cuifeng; Chen Tao; Xu Zegang; Mao Mingzhen; Zhang Xiaoguang; Ning Binke; Su Tianduo; Li Bingbo; Wang Yuemei; Wei Tianqi; Zhang Yuanyuan; (7 pag.)CN108456235; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 31886-58-5

The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.,31886-58-5

b) Preparation of L (mixture of diastereomers).At <-100C, 15.5 ml (23.2 mmol) of t-butyllithium (t-Bu-Li) (1.5 M in pentane) are added dropwise to a solution of 5.98 g (23.2 mmol) of (R)-1 -dimethylamino-1 - ferrocenylethane in 40 ml of diethyl ether (DE). After stirring at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. A solution of the compound X2 is thus obtained, which is added via a cannula to the cooled suspension of the monochlorophosphine X1 at a sufficiently slow rate that the temperature does not exceed -300C. After stirring at -30C for a further 10 minutes, the temperature is allowed to rise to 0C, and the mixture is stirred at this temperature for another 2 hours. The reaction mixture is admixed with 20 ml of water. The organic phase is removed and dried over sodium sulphate, and the solvent is distilled off on a rotary evaporator under reduced pressure. After chromatographic purification (silica gel 60; eluent = heptane/ethyl acetate(EA)/Nethyl3(Net3) 85:10:5), 11.39 g of the desired product are obtained as a mixture of 2 diastereomers. The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings. Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2008/113835; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of Tris[2-(dimethylamino)ethyl]amine

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO212,mainly used in chemical industry, its synthesis route is as follows.,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.404 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromotetradecane (1.47 g, 5.32 mmol). Theresulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-14,14,14 (1.31 g, 70%) as a white powder; mp=229-258 C; ?H NMR(300 MI-Tz, CDC13) 34.10-4.02 (m, 6H), 3.63-3.54 (m, 6H), 3.39-3.22 (m, 24H), 1.73-1.61 (m, 6H), 1.36-1.06 (m, 66H), 0.84-0.77 (m, 9H); ?3C NMR (75 MHz, CD3OD) 365.3, 61.0, 50.1, 46.9, 31.7, 29.4, 29.4, 29.3, 29.3, 29.1, 29.0, 26.1, 22.5, 22.4, 13.1; high resolution mass spectrum (ESI) m/z 273.9766 ([Mj3 calculated for [C54H,,7N4j3t 273.9754). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1.?H and ?3C NMR spectra of compound T-14,14,14 can be found in Figure 53.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine,belong chiral-nitrogen-ligands compound

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 31886-58-5

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,31886-58-5

General procedure: 0C, N2,7 mL of tBuLi in n-hexane (1.6 mol/L, 11.2 mmol) was added dropwise with stirringCompound 1 (2.57 g, 10 mmol) in anhydrous ether (20 mL),After the addition, the mixture was naturally warmed to room temperature and stirred for 2 hours. Then cool down to -78C,The redistilled PCl3 (11.46 mmol, 1 mL) was slowly added dropwise, and the mixture was warmed to room temperature.The reaction was overnight. Then cool down to -78C again.A solution of R2MgBr (prepared from 30 mmol of R2Br and 0.8 g, 33.3 mmol of magnesium turnings in tetrahydrofuran) was slowly added dropwise using a constant pressure funnel. After the addition, slowly warm up the reaction overnight.Then 20 mL of saturated NH4Cl solution was added. The oil phase was extracted three times with 20 mL ether.After the oil phase was dried over anhydrous sodium sulfate, it was spin-dried, and the silica gel was subjected to a chromatography to obtain the target compound 2 .

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Kaitelisi (Shenzhen) Technology Co., Ltd.; Zhang Xumu; Liang Zhiqin; (17 pag.)CN107722068; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

With the synthetic route has been constantly updated, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belong chiral-nitrogen-ligands compound,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,31886-58-5,Molecular formula: C14H19FeN,mainly used in chemical industry, its synthesis route is as follows.,31886-58-5

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

With the synthetic route has been constantly updated, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,110-70-3

2-(2-methoxyphenyl)-1,3-dimethylimidazolidine. A solution of o-anisaldehyde (9.0 g, 66 mmol) and N,N’-dimethylethylenediamine (7.9 mL, 73 mmol) in ethanol (180 mL) was stirred at r.t. for overnight. MgSO4 (30 g) was added and the mixture was stirred for 20 min. The reaction mixture was filtered and washed with ether. The solvent was removed in vacuo to afford 2-(2-methoxyphenyl)-1,3-dimethylimidazolidine as a light yellow solid, 12 g, yield 88%. 1H NMR (500 MHz, CHLOROFORM-D) delta ppm 2.21 (s, 6H) 2.57-2.72 (m, 2H) 3.34 (d, J=2.75 Hz, 2H) 3.82 (s, 3H) 4.13 (s, 1H) 6.88 (d, J=8.24 Hz, 1H) 7.00 (t, J=7.48 Hz, 1H) 7.25-7.30 (m, 1H) 7.67 (d, J=7.63 Hz, 1H).

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Bristol-Myers Squibb Company; US2007/270406; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 110-70-3

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO17,mainly used in chemical industry, its synthesis route is as follows.,110-70-3

General procedure: To a cooled to 0 C suspension consisting of N,N’-dimethyl-1,2-ethylenediamine (4.4 g, 0.05 mol), sodium bicarbonate (33.6 g, 0.40 mol), and CH2Cl2 (50 mL), a solution of 2-bromopropionyl chloride (1a) (25.7 g, 0.15 mol) in CH2Cl2 (40 mL) was added. The reaction temperature was maintained within 0-5 C and the addition time was 40 min. The mixture was stirred for 4 h at the same temperature. Water (130 mL) and CH2Cl2 (60 mL) were added and the organic layer was separated. The combined organic fractions were dried over sodium sulfate. The solvent was removed under reduced pressure. The residue was treated with hexane (30 mL) and a solid product was filtered off and recrystallized from diethyl ether to give pure compound 2a (13.25 g, 74%), m.p. 77.0-77.4 C (from diethyl ether).

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

Reference£º
Article; Goncharova; Yakushchenko; Raevskaya; Yakushchenko; Konovalova; Russian Chemical Bulletin; vol. 68; 1; (2019); p. 181 – 185; Izv. Akad. Nauk, Ser. Khim.; 1; (2019); p. 181 – 185,5;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis