The important role of 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

To a mixture of Cu(NO3)22.5H2O (0.504 g, 2.17 mmol) in MeOH(15.0 mL), was added tris[2-(dimethylamino)ethyl]amine (L4)(0.500 g, 2.17 mmol) and stirred at RT. The blue solution was evaporatedunder reduced pressure to afford a yellow solid. The solidwas dissolved again in MeOH and diffused with diethyl ether. Suitableblue block-shaped crystals were obtained in 2 days. Yield(0.921 g, 98%).

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Article; Sivanesan, Dharmalingam; Seo, Bongkuk; Lim, Choong-Sun; Kim, Hyeon-Gook; Journal of Catalysis; vol. 382; (2020); p. 121 – 128;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

The ligand L1Q was synthesized via similar procedure mentionedabove [23]. To an aqueous solution of 2-(chloromethyl)-quinoline hydrochloride (2 g, 9.34 mmol), a solution of potassiumcarbonate (2.73 g, 18.66 mmol) in 10 mL water was added in dropwisemanner. The reaction mixture was stirred for 30 min at ambienttemperature. After stirring, the resulting solution wasextracted with dichloromethane (3 20 mL). The combinedorganic extracts were dried over anhydrous sodium sulfate andsolvent was evaporates under vacuum. The product 2-(chloromethyl)-quinoline was then dissolved in dichloromethane(10 mL) and was added dropwise to a solution of N,N0-dimethylethylenediamine (0.503 mL, 5.34 mmol) in 15 mL dichloromethane.After this addition, aqueous sodium hydroxide (10 mL,1 M) was added slowly. The reaction mixture was stirred for next60 h at room temperature, followed by rapid addition of anotherfraction of sodium hydroxide (10 mL, 10 mmol). The reaction mixturewas then extracted with dichloromethane (3 25 mL) andorganic portions were combined and dried over anhydrous sodiumsulfate. Volatile solvents were removed under vacuum to obtaincrude ligand L1Q as dark brown oil (1.68 g, Yield 85%). 1H NMR(500 MHz, Methanol-d4) d 7.57 (m, 2H, quinoline ring),7.63 (d,2H, quinoline ring), 7.73 (m, 2H, quinoline ring), 7.88 (d, 2H, quinolinering),7.98 (d, 2H, quinoline ring), 8.21 (d, 2H, quinoline ring),3.84 (s, 4H, -N-CH2-Quinoline), 2.71 (s, 4H, -CH2-CH2-), 2.32 (s,6H, -N-CH3). IR (cm1): 3384, 3056, 2946, 2800, 1617, 1598,1564, 1504, 1456, 1426, 1361, 1309, 1223, 1141, 1119, 1032,985, 951, 828, 784, 756, 619.

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

General procedure: 0C, N2,7 mL of tBuLi in n-hexane (1.6 mol/L, 11.2 mmol) was added dropwise with stirringCompound 1 (2.57 g, 10 mmol) in anhydrous ether (20 mL),After the addition, the mixture was naturally warmed to room temperature and stirred for 2 hours. Then cool down to -78C,The redistilled PCl3 (11.46 mmol, 1 mL) was slowly added dropwise, and the mixture was warmed to room temperature.The reaction was overnight. Then cool down to -78C again.A solution of R2MgBr (prepared from 30 mmol of R2Br and 0.8 g, 33.3 mmol of magnesium turnings in tetrahydrofuran) was slowly added dropwise using a constant pressure funnel. After the addition, slowly warm up the reaction overnight.Then 20 mL of saturated NH4Cl solution was added. The oil phase was extracted three times with 20 mL ether.After the oil phase was dried over anhydrous sodium sulfate, it was spin-dried, and the silica gel was subjected to a chromatography to obtain the target compound 2 .

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Patent; Kaitelisi (Shenzhen) Technology Co., Ltd.; Zhang Xumu; Liang Zhiqin; (17 pag.)CN107722068; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.403 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromohexadecane (1.63 g, 5.35 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T-16,16,16 (1.67 g, 84%) as a white powder; mp=229-258 C; ?H NMR (300 MI-Tz, CDC13) oe 4.11-4.02 (m, 6H), 3.64-3.55 (m, 6H), 3.45-3.37 (m, 6H), 3.35(s, 18H), 1.78-1.66 (m, 6H), 1.40-1.18 (m, 78H), 0.88-0.81 (m, 9H); high resolution mass spectrum (ESI) m/z 302.0073 ([Mj3 calculated for [C6oH,29N4j3: 302.0067). ?H spectmm of compound T-16,16,16 can be found in Figure 54.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of Tris[2-(dimethylamino)ethyl]amine

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

Cu(CH3COO)2H2O (52 mg, 0,26 mmol) was dissolved in the smallest possible amount of acetone and treated with an excess of Me6TREN. The mixture was left under vigorous stirring for a couple of hours. During this time, the solution turned from blue to green. After evaporation of the solvents, the green product was redisolved in acetone and an excess of KPF6 (dissolved in acetoneas well) was added. The white solid CH3COOK formed on the bottom of the flask and it was filtered off. The light blue solution was dried under vacuum and the solid dissolved in dichloromethanein order to eliminate the excess of KPF6. After filtration of the solid residue, the solution was reduced in volume and the pure product 4 precipitated upon addition of diethylether. Crystals suitable for XRD were grown at low temperature by slow diffusion of diethyl ether into a dichloromethane solution of 4. Yield: 27%; Anal. Calc. for [Cu(L1)(CH3COO)](PF6)2H2O: C, 31.46; H, 6.93; N, 10.49. Found: C, 30.89; H,6.89; N, 10.39%.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of N1,N2-Dimethylethane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

Preparation of N-tert-Butoxycarbonyl-N, N’-dimethylethylenediamine; Lambda/,Lambda/-dimethylethylenediamine (1.O g, 11.3 mmol) was dissolved in anhydrous dichloromethane (10 ml.) and was treated with triethylamine (1.6 ml_, 1 1.3 mmol). The mixture EPO was cooled to 0 C for the addition of di-terf-butyl dicarbonate (2.5 g, 1 1.3 mmol). The reaction stirred for 30 min at 0 C then 2 hours at room temperature. The reaction mixture was then washed with water (10 ml.) and the aqueous layer extracted with further portions of dichloromethane (2 x 10 ml_). The combined organic phases were dried over NaaSCu and the solvent removed in vacuo. Purification by column chromatography (40:8:1 , dichloromethane:methanol:aqueous ammonia) yielded (508 mg, 24 %) of the desired N-tert- butoxycarbonyl-N,N’-dimethylethylenediamine as a colourless oil.

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; BIOTICA TECHNOLOGY LTD.; WO2007/26027; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of Tris[2-(dimethylamino)ethyl]amine

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.,110-70-3

o-Anisaldehyde (10.0 g, 73.4 mmol, 1.0 equiv) was dissolved in EtOH (150 mL) at 25 CC, MAT-dimemylethylenediamine (8.70 mL, 80.8 mmol, 1.1 equiv) was added, and the reaction contents were stirred at 25 C for 24 h before being filtered through a pad of MgS04 and concentrated to afford the desired imidazolidine (15.0 g, 99% yield) as a white solid. Without any additional purification, this material (15.0 g, 72.8 mmol, 1.0 equiv) was dissolved in Et20 (250 mL) and cooled to -40 C. f-BuLi (1.7 M in pentane. 100 mL 170 mmol, 2.34 equiv) was then added dropwise over 1 h at -40 C. Upon completion, the resultant orange reaction contents were warmed slowly to -20 C. stirred for an additional 7 h, and then transferred by cannula over 5 min into a flask containing (CBrCl2)2 (55.3 g, 170 mmol, 2.34 equiv) in Et20 (250 mL) at 0 C. The reaction contents were then stirred for 12 h, during which time they were warmed to 25 C; upon completion, the solution was recooled to 0 C and 1 M HCI (500 mL) was added slowly. The resultant solution was stirred for 1 h at 0 C, quickly warmed to 25 C, and then quenched by the addition of water (500 mL). The reaction contents were then extracted with EtOAc (3 x 250 mL), and the combined organic extracts were washed with water (500 mL) and brine (250 mL). dried (MgSO-i), and 73 concentrated.’23’ The resultant crude yellow solid was purified by flash column chromatography (silica gel, hexanes EtOAc, 9/1) to give the desired brominated product 28 (8.12 g, 52% yield) as a white solid. This material (8.12 g, 37.8 mmol, 1.0 equiv) was suspended in MeOH (100 mL) at 25 C and cooled to 0 C. NaBHj (2.88g , 75.6 mmol, 2.0 equiv) was added portionwise and the reaction contents were stirred for 1 h at 0 C. Upon completion, the reaction contents were quenched with water (100 mL) and concentrated. The reaction contents were redissolved in EtOAc ( 100 mL), poured into water (100 mL), and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with water ( 150 mL) and brine (50 mL), dried (MgSO- , and concentrated to afford the desired alcohol (7.83 g, 96%) as a white solid. Pressing forward without any additional purification, this newly prepared material (7.83 g, 36.1 mmol, 1.0 equiv) was dissolved in EtjO (180 mL) and pyridine (0.437 mL, 5.41 mmol, 0.15 equiv) and PBr^ (3.41 mL, 36.1 mmol, 1.0 equiv) were added sequentially at 25 C. The reaction contents were then stirred for 4 h at 25 C. Upon completion, the reaction contents were quenched by the addition of water (100 mL), poured into water ( 100 ml), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (200 mL) and brine (100 mL), dried (MgS04), and concentrated to give the desired bromide (10.0 g, 99%) as a white solid. [Note: This product quickly decomposes on standing once it is neat and should be carried forward immediately. | Finally, KHMDS (0.5 M in toluene, 129 mL, 64.5 mmol, 1.8 equiv) was added to a solution of diethyl phosphite (9.19 mL, 71.4 mmol, 2.0 equiv) in THF (100 mL) at 0 C and stirred for 15 min. To this solution was added dropwise a solution of the freshly prepared bromide (10.0 g, 35.7 mmol, 1.0 equiv) dissolved in THF (100 mL), and the reaction contents were stirred for 12 h with slow warming to 25 C. Upon completion, the reaction contents were quenched with saturated NH4CI (150 mL), poured into water (150 mL), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (100 mL) and brine (100 mL), dried (MgS04), and concentrated to give the phosphonate 31 (10.79 g, 90%) as a colorless oil. 31: R/ = 0.21 (silica gel, EtOAc); IR (film) vmax 2981, 1589, 1572, 1466, 1435, 1267, 1082, 965, 864, 771 ; NMR (400 MHz, CDCI3) delta 7.18 (d, / = 8.0 Hz, 1 H), 7.07 (app dt, J = 8.0, 2.4 Hz, 1 H), 6.81 (d, J = 8.4 Hz, 1 H), 4.05 (dq, J = 7.2, 7.2 Hz, 4 H), 3.85 (s, 3 H), 3.50 (d, J = 22.0 Hz, 2 H), 1.26 (t, J = 7.2 Hz, 6 H); l3C NMR (75 MHz, CDCI3) delta 158.4 (d, J = 5.4 Hz). 128.6 (d, J = 3.8 Hz), 125.8 (d, J = 7.5 Hz), 125.0 (d, J = 3.5 Hz), 121.6 (d, J = 10.6 Hz), 109.4 (d, J = 3.4 Hz), 61.9 (d, J = 6.5 Hz), 55.9, 28.3 (d, J = 139.0 Hz), 16.3 (d, J = 6.4 Hz); HRMS (MALDI-FTMS) calcd for Ci2H|9BrP04+ [M + H*] 337.0204, found 337.0189

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Patent; THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK; SNYDER, Scott Alan; SHERWOOD, Trevor C.; ROSS, Audrey G.; OH, Hyunju; GHOSH, Sankar; WO2011/103442; (2011); A2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 33527-91-2

33527-91-2 is used more and more widely, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,33527-91-2

Ni(CH3COO)2 (53 mg, 0,30 mmol) was dissolved in the smallest possible amount of methanol while an excess of Me6TREN was dissolved in acetone. After addition of the second solution to the first one, a change in colour from light blue to green was observed. An excess of KPF6, dissolved in acetone, was added to the previous solution in order to promote the anion metathesis reaction. The solvent was evaporated and the green solid obtained was dissolved in pure acetone. A white solid remained undissolved on the bottomof the flask (CH3COOK) and was filtered off. The solution was dried under vacuum and the solid dissolved in dichloromethane in order to eliminate the excess of KPF6. After filtration of the solid residue,the solution was reduced in volume and the pure product 2 was precipitated upon addition of n-pentane. Crystals suitable for XRD were grown at low temperature by slow diffusion of n-pentane into a dichloromethane solution of 2. Yield: 86%; Anal. Calc. for[Ni(L1)(CH3COO)](PF6)H2O: C, 32.90; H, 6.90; N, 10.96. Found: C,33.23; H, 6.97; N, 10.93%.

33527-91-2 is used more and more widely, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 110-70-3

110-70-3 is used more and more widely, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,110-70-3

N, N’-Dimethylethylenediamine (5.00g, 57mmol) was dissolved in CH2Cl2 (25mL) and cooled to 0C. Di-tert-butyl dicarbonate (5.00g, 22mmol) was dissolved in CH2Cl2 (25mL) and added dropwise to the reaction flask at 0C, and then warmed to room temperature and stirred overnight. The reaction solution was quenched with H2O (20mL), and extracted with CH2Cl2 (40mL x 2), and the combined organic layers dried with Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel using CH3OH/CH2Cl2 (1/20, V/V) as eluent to give 2 as colorless oil (4.37g, 81%), 1H NMR (400MHz, CDCl3) delta 3.39-3.36 (m, 2H, CH2), 2.95-2.90 (s, 3H, CH3), 2.76 (m, 2H, CH2), 2.48 (s, 3H, CH3), 1.48 (s, 9H, (CH3)3); HRMS (ESI) m/z [M+H]+ Calcd for C9H21N2O2+: 189.1603. Found: 189.1601.

110-70-3 is used more and more widely, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Article; Yang, Hao; Ouyang, Yifan; Ma, Hao; Cong, Hui; Zhuang, Chunlin; Lok, Wun-Taai; Wang, Zhe; Zhu, Xuanli; Sun, Yutong; Hong, Wei; Wang, Hao; Bioorganic and Medicinal Chemistry Letters; vol. 27; 20; (2017); p. 4635 – 4642;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis