Analyzing the synthesis route of 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.

To a solution of 1.0 g (R)-Ugi amine (3.8 mmol) in dry DCM, 2 cm3 acetic acid anhydride (21 mmol) was added dropwise at room temperature.After 5 h, the reaction mixture was diluted with another portion of DCM (30 cm3) and washed with 5% NaHCO3(4 ¡Á 20 cm3). The collected organic layers were dried over MgSO4 and filtered, and the resulting solution was evaporated under reduced pressure to afford the crude product as an orange crystalline solid (1.04 g, 93%). M.p.: 70-72 C(lit. 70-71 C); 1H NMR (300 MHz, CDCl3):delta = 5.83 (q,J = 6.5 Hz, 1H), 4.29-4.19 (m, 2H), 4.15 (s, 3H), 1.56 (d,J = 6.5 Hz, 3H) ppm.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Mravec, Bernard; Plevova, Kristina; ?ebesta, Radovan; Monatshefte fur Chemie; vol. 150; 2; (2019); p. 295 – 302;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

In a 1000 ml three-necked flask equipped with a dropping funnel and a magnetic stirrer, 31.9 g (0.233 mol) of phosphorus trichloride and 500 ml of anhydrous diethyl ether were charged at room temperature in a nitrogen gas atmosphere, and the mixture was cooled to 5C or less in an ice bath. While the resulting reaction mixture was stirred, 25.0 ml (0.233 mol) of N,N’-dimethylethylenediamine were slowly added dropwise to the reaction mixture. Furthermore, 65.0 ml (0.465 mol) of triethylamine were slowly added dropwise. After the reaction mixture was further stirred for 1.5 hours, it was filtered under pressure in a nitrogen gas atmosphere. After the resulting crystals were washed with anhydrous diethyl ether three times, they were purified by vacuum-distillation (0.4 kPa, 44-52C), and 16.28 g of chloro(N,N’-dimethylethylenediamino)phosphine were obtained in the form of a transparent liquid; the yield was 46%. The resulting compound was identified with a nuclear magnetic resonance analyzer (BRUKER Ultra Shield 300 NMR Spectrometer, manufactured by BRUKER Limited.). The resulting spectral data are shown below. 1H-NMR (300 MHz, solvent: CDCl3, standard substance: tetramethylsilane) delta 3.32 (d, 4H) 2.78 (d, 6H) 31P-NMR (121 MHz, solvent: CDCl3, standard substance: triphenylphosphine) delta 171.30 (s, 1P) The structural formula is shown below.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Kanto Denka Kogyo CO., LTD.; EP1956026; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of Tris[2-(dimethylamino)ethyl]amine

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.404 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromotetradecane (1.47 g, 5.32 mmol). Theresulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-14,14,14 (1.31 g, 70%) as a white powder; mp=229-258 C; ?H NMR(300 MI-Tz, CDC13) 34.10-4.02 (m, 6H), 3.63-3.54 (m, 6H), 3.39-3.22 (m, 24H), 1.73-1.61 (m, 6H), 1.36-1.06 (m, 66H), 0.84-0.77 (m, 9H); ?3C NMR (75 MHz, CD3OD) 365.3, 61.0, 50.1, 46.9, 31.7, 29.4, 29.4, 29.3, 29.3, 29.1, 29.0, 26.1, 22.5, 22.4, 13.1; high resolution mass spectrum (ESI) m/z 273.9766 ([Mj3 calculated for [C54H,,7N4j3t 273.9754). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1.?H and ?3C NMR spectra of compound T-14,14,14 can be found in Figure 53.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The ligand L1 was synthesized via previously reported procedure[23]. A solution of potassium carbonate (2.55 g, 18.45 mmol)in 10 mL water was dropwise added to the aqueous solution of 2-(chloromethyl)-pyridine hydrochloride (1.5 g, 9.15 mmol in10 mL). After about 30 min. of stirring at room temperature, thereaction mixture was extracted with dichloromethane(3 20 mL). The combined organic extracts were dried over anhydroussodium sulfate. The solution was filtered and the solvent wasremoved under vacuum. The resulted residue was then dissolvedin dichloromethane (10 mL). The dichloromethane solution of 2-chloromethyl-pyridine was added dropwise to a solution of N,N0-dimethylethylenediamine (0.471 mL, 5.34 mmol) in dichloromethane(15 mL). After this addition, 10 mL of aqueous sodiumhydroxide (1 M) was added slowly and the reaction mixture wasstirred for next 60 h at room temperature. After stirring was finished,another fraction of sodium hydroxide (10 mL, 1 M) wasadded rapidly. The reaction mixture was extracted with dichloromethane(3 25 mL) and combined organic portion was dried overanhydrous sodium sulfate. Evaporation of solvent led to isolationof the ligand L1 as a dark orange oil. (1.13 g, Yield 79%) 1H NMR(500 MHz, Methanol-d4) d 7.27 (m, 2H, pyridine ring), 7.50 (d,2H, pyridine ring), 7.76 (m, 2H, pyridine ring), 8.45 (d, 2H, pyridinering), 3.68 (s, 4H, -N-CH2-Py), 2.63 (s, 4H, -CH2-CH2-), 2.26 (s, 6H,N-CH3). IR (cm1): 2945, 2789, 1589, 1569, 1472, 1432, 1360,1304, 1146, 1090, 1031, 994, 635, 614, 418.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

A solution of N,N?-dimethylethylenediamine (1.72g, 20mmol) in dry tetrahydrofuran (60mL) was treated with 2-chloromethylpyridine hydrochloride (6.604g, 40mmol) and triethylamine (8.093g, 80mmol) and the mixture was stirred under reflux for 18h. The resulting mixture was cooled to in ice and the triethylamine hydrobromide was removed by filtration. The filtrate was then treated with 10mL 15% NaOH solution and extracted with CH2Cl2 (3¡Á40mL). The combined extracts were dried over anhydrous MgSO4. Removal of the solvent with rotary evaporator yielded dark brown oil which was chromatographed on alumina and eluted with 95/5 (v/v) mixture of ethyl acetate/MeOH (Rf=0.81). The purified ligand was obtained as yellow viscous oil (yield: 4.2g, 79%). Selected IR bands (cm-1): nu(C-H) 3064 (w), 2949 (m), 2802 (m); pyridyl groups: 1592 (s), 1577 (m), 1474 (m), 1435 (s). 1H NMR: 8.43 (m, 2H), 7.70 (m, 2H), 7.37 (m, 2H), 7.72 (m, 2H), 3.58 (s, 4H), 2.51 (s, 4H), 2.14 (s, 6H); 13C NMR: 159.74 (2-py), 149.06 (6-py), 136.78 (4-py), 123.01 (3-py), 122.42 (5-py), 63.95 (N-CH2-py), 35.40 (-CH2-CH2-N), 42.94 (CH3-N), 40.60 (CH3-N).

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Mautner, Franz A.; Koikawa, Masayuki; Mikuriya, Masahiro; Harrelson, Emily V.; Massoud, Salah S.; Polyhedron; vol. 59; (2013); p. 17 – 22;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 110-70-3

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To an ice-cooled solution of N,N’-dimethyethylenediamine (10 mL, 91.0 mmol) in dry THF (150 mL) was added a solution of Boc2O (4.97 g, 22.8 mmol) in dry THF (50 mL) over 30 minutes. The reaction mixture was stirred for 1 h at 0 C. then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat. NH4Cl solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10% MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%).LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR=0.50 min; [M+H]+=189.40.

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Aissaoui, Hamed; Boss, Christoph; Corminboeuf, Olivier; Frantz, Marie-Celine; Grisostomi, Corinna; US2011/224210; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of (R)-4-(tert-Butoxycarbonyl)thiomorpholine-3-carboxylic acid

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 119139-23-0, its synthesis route is as follows.

General procedure: A reaction flask equipped with a magnetic stirrer was charged with a solution of 3, 4-bisindolylmaleimide (2.1 g, 6.4 mmol) in 100 mL of acetone. Potassium hydroxide (0.40 g, 7.1 mmol) was added to the solution at 0 C and stirred for 0.5 h. Iodomethane (1.6 g, 0.011 mol) or 1-bromooctane (2.4 g, 0.012 mol) was added to the reaction mixture for 3, 4-bisindolyl-1-N-methylmaleimide or 3, 4-bisindolyl-1-N-(n-octyl)maleimide, respectively. The reaction mixture was warmed to room temperature and stirred for 1 h (iodomethane) or 24 h (1-bromooctane). The reaction mixture was concentrated and then dissolved in a mixture of ethyl acetate and water. The organic phase was separated, washed with water once and brine once, dried over anhydrous sodium sulfate. The product was purified by flash chromatography with petroleum ether, ethyl acetate and dichloromethane (V/V = 3:1:2) as eluent.

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Zhang, Qianfeng; Chang, Guanjun; Zhang, Lin; Chinese Chemical Letters; vol. 29; 3; (2018); p. 513 – 516;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

N, N’-Dimethylethylenediamine (5.00g, 57mmol) was dissolved in CH2Cl2 (25mL) and cooled to 0C. Di-tert-butyl dicarbonate (5.00g, 22mmol) was dissolved in CH2Cl2 (25mL) and added dropwise to the reaction flask at 0C, and then warmed to room temperature and stirred overnight. The reaction solution was quenched with H2O (20mL), and extracted with CH2Cl2 (40mL x 2), and the combined organic layers dried with Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel using CH3OH/CH2Cl2 (1/20, V/V) as eluent to give 2 as colorless oil (4.37g, 81%), 1H NMR (400MHz, CDCl3) delta 3.39-3.36 (m, 2H, CH2), 2.95-2.90 (s, 3H, CH3), 2.76 (m, 2H, CH2), 2.48 (s, 3H, CH3), 1.48 (s, 9H, (CH3)3); HRMS (ESI) m/z [M+H]+ Calcd for C9H21N2O2+: 189.1603. Found: 189.1601.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Yang, Hao; Ouyang, Yifan; Ma, Hao; Cong, Hui; Zhuang, Chunlin; Lok, Wun-Taai; Wang, Zhe; Zhu, Xuanli; Sun, Yutong; Hong, Wei; Wang, Hao; Bioorganic and Medicinal Chemistry Letters; vol. 27; 20; (2017); p. 4635 – 4642;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

Preparation of Methyl-(2-methylamino-ethyl)-carbamic acid tert-butyl esterTo an ice-cooled solution of N,N’-dimethyethylenediamine (10 ml_, 91.0 mmol) in dry THF (150 ml.) was added a solution of BoC2O (4.97 g, 22.8 mmol) in dry THF (50 ml.) over 30 minutes. The reaction mixture was stirred for 1 h at 00C then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat.NH4CI solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10 % MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%). LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR = 0.50 min; [M+H]+ 189.40.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ACTELION PHARMACEUTICALS LTD; AISSAOUI, Hamed; BOSS, Christoph; CORMINBOEUF, Olivier; FRANTZ, Marie-Celine; GRISOSTOMI, Corinna; WO2010/58353; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 119139-23-0

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, cas is 119139-23-0 its synthesis route is as follows.

EXAMPLE 14 820 mg of Lawesson’s reagent was added to a solution of 330 mg of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 50 ml of dimethoxyethane and the mixture was heated to reflux for 1 hour. 410 mg of Lawesson’s reagent were then added and the mixture was heated to reflux for a further 1 hour. The solvent was evaporated and the residue was purified on silica gel with ethyl acetate/hexane (1:4). Recrystallization from diethyl ether/hexane gave 30 mg of 5-thioxo-3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. 254-257 C.

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis