Downstream synthetic route of Tris[2-(dimethylamino)ethyl]amine

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.

LiBEt3H (1 mL, 1.0 M in THF, 1 mmol) and Me6TREN (0.26 mL,1 mmol) were added to 5 mL of hexane, precipitating a white powder.THF was slowly added dropwise with stirring until a homogeneoussolution was obtained (approx. 3 mL) Cooling of the solutionat 30 C yielded X-ray quality colorless crystals (225 mg, 67%).1H NMR (400.1 MHz, C6D6, 300 K): delta 2.06 (s, 18H, Me6TREN Me),1.86 (t, 6H, 3JHH = 4.95 Hz, Me6TREN CH2), 1.78 (t, 6H, 3JHH = 4.95 Hz,Me6TREN CH2), 1.54 (t, 9H, 3JHH = 7.43 Hz, BCH2CH3), 0.95 ppm(q, 6H, 3JHH = 7.43 Hz, BCH2CH3).13C NMR (100.6 MHz, C6D6, 300 K): delta 57.2 (Me6TREN CH2), 50.6(Me6TREN CH2), 45.7 (Me6TREN Me), 16.7 (m, 1JBC = 41.5 Hz,BCH2CH3), 14.2 ppm (BCH2CH3).7Li NMR (155.5 MHz, C6D6, 300 K): delta 0.18 ppm.11B NMR (128.3 MHz, C6D6, 300 K): delta 11.3 ppm (broad singlet).Elemental analysis for C18H46N4LiB: Calc.: C, 64.28; H, 13.79; N,16.66. Found: C, 64.24; H, 13.49; N, 16.75%.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example 1203 ,3 -Dimethyl-2-{3 – [methyl- (2-methylamino-ethyl) -amino] -phenyl}- 1 ,2,3 ,4- tetrahydro-quinoline-6-carboxylic acidA mixture of 2-(3-bromo-phenyl)-3,3-dimethyl-l,2,3,4-tetrahydro-quinoline-6-carboxylic acid (600 mg, 1.7 mmol), N,N’-dimethyl-ethane-l,2-diamine (0.37 mL, 3.4 mmol), copper(I) iodide (96 mg, 0.5 mmol), N, N-dimethylglycine hydrochloride (140 mg, 1.0 mmol) and potassium carbonate (923 mg, 6.7 mmol) in dimethyl sulfoxide (5 mL)was stirred at 120C for 16 h. Then the reaction mixture cooled to room temperature. The reaction mixture was extracted with ethyl acetate (2 x 150 mL), washed with water (2 x 50 mL) and saturated aqueous ammonium chloride solution (2 x 50 mL), dried over anhydrous sodium sulfate and then concentrated in vacuo. Purification by Waters automated flash system (column: Xterra 30 mm x 100 mm, sample manager 2767, pump 2525, detector: ZQ mass and UV 2487, solvent system: acetonitrile and 0.1% ammonium hydroxide in water) afforded 3,3-dimethyl-2-{3- [methyl-(2-methylamino-ethyl)-amino] – phenyl} -l,2,3,4-tetrahydro-quinoline-6-carboxylic acid (500 mg, 80%) as a white solid : LC/MS m/e calcd for C22H29N3O2 (M+H)+: 368.50, observed: 368.1.

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; CHEN, Li; FENG, Lichun; HUANG, Mengwei; LIU, Yongfu; WU, Guolong; WU, Jim, Zhen; ZHOU, Mingwei; WO2011/128251; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 33527-91-2

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

33527-91-2, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

Ni(CH3COO)2 (53 mg, 0,30 mmol) was dissolved in the smallest possible amount of methanol while an excess of Me6TREN was dissolved in acetone. After addition of the second solution to the first one, a change in colour from light blue to green was observed. An excess of KPF6, dissolved in acetone, was added to the previous solution in order to promote the anion metathesis reaction. The solvent was evaporated and the green solid obtained was dissolved in pure acetone. A white solid remained undissolved on the bottomof the flask (CH3COOK) and was filtered off. The solution was dried under vacuum and the solid dissolved in dichloromethane in order to eliminate the excess of KPF6. After filtration of the solid residue,the solution was reduced in volume and the pure product 2 was precipitated upon addition of n-pentane. Crystals suitable for XRD were grown at low temperature by slow diffusion of n-pentane into a dichloromethane solution of 2. Yield: 86%; Anal. Calc. for[Ni(L1)(CH3COO)](PF6)H2O: C, 32.90; H, 6.90; N, 10.96. Found: C,33.23; H, 6.97; N, 10.93%.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.

500 mg (R)-N,N-dimethylferrocene amine (shown in formula a) is added to the ether solution to dissolve, and the reaction system is cooled to At -78 , add 1.2eq n-butyllithium, 1.2eqTMEDA, 1.1eq elemental iodine, react at low temperature for 30 minutes, naturally rise to room temperature, detect the reaction by TLC, quench the reaction after the reaction is completed, ethyl acetate extraction, concentration, column Chromatographic separation yields the target product (represented by formula b).Dissolve 480 mg of the obtained product in tetrahydrofuran, add 12 mg of palladium metal catalyst and 100 mg of pyridine boric acid, react at room temperature, and check the reaction after 4 hours. After the reaction is complete, directly concentrate through the column to separate. In the method, 450 mg of diphenylphosphinomethanamine was added, and the reaction was refluxed for 2 hours. The reaction was detected by TLC, and finally the target product (represented by Formula A1) was obtained, with a total yield of 31%.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Jiangsu Pharmaceutical Profession College; Qi Liang; Lin Rui; (8 pag.)CN110845547; (2020); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

To a solution of N,N’-dimethylethylenediamine (300 mg) in DMF (2.0 mL) was added K2CO3 (1.0 g) and compound B (466 mg). The mixture was heated at 80C for 3h. Solvent was evaporated and the residue was extracted with DCM and then purified by a prep-TLC plate (10%MeOH/DCM with 1% NH3 in methanol) to give product as a yellow solid (400 mg, yield 75%).

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ARIAD PHARMACEUTICALS, INC.; ZHU, Xiaotian; WANG, Yihan; SHAKESPEARE, William, C.; HUANG, Wei-Sheng; DALGARNO, David, C.; WO2013/169401; (2013); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

HL1 was prepared by a modification of a method previouslyreported [23] and characterised by 1H NMR spectroscopy. Theligand was obtained as follows: to a solution of 2-hydroxybenzaldehyde(6.10 mL, 82.95 mmol) in absolute ethanol (250 mL),N,N’-dimethylethylenediamine (13.1 g, 100 mmol) and MgSO4were added. The suspension was stirred at room temperature for16 h and then filtered. The filtrate was concentrated under pressureto yield a yellow liquid, which was purified by distillation ina glass oven. Yield: 14.03 g (88%), b.p.: 145 C. 1H NMR (300 Hz,CDCl3) d: 11.52 (s, 1H, OH); 7.21 (td, J = 8.1 and 1.8 Hz, 1H, H6);6.97 (dd, J = 7.5 and 1.8 Hz, 1H, H4); 6.84 (dd, J = 8.4 and 1.2 Hz,1H, H7); 6.77 (td, J = 7.5 and 1.2 Hz, 1H, H5); 3.42 (s, 1H, H2);3.40 (m, 2H, 2H1); 2.59-2.53 (m, 2H, 2H1); 2.28 (s, 6H, 6H9) ppm.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Reference£º
Article; Fondo, Matilde; Doejo, Jesus; Garcia-Deibe, Ana M.; Sanmartin, Jesus; Gonzalez-Bello, Concepcion; Vicente, Ramon; Polyhedron; vol. 100; (2015); p. 49 – 58;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.401 g, 1.74 mmol) in acetonitrile (4 mL) was added 1-bromododecane (1.34 g, 5.38 mmol). The resulting mixture was heated at reflux with stirring for 22 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-12,12,12 (1.39 g, 82%) as a white powder; mp=225-254 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.11-4.03 (m, 6H), 3.63-3.55 (m, 6H), 3.39-3.32 (m, 6H), 3.30(s, 18H), 1.72-1.62 (m, 6H), 1.37-1.14 (m, 54H), 0.84-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) 3 65.3, 61.0, 50.1, 46.8, 31.7, 29.4, 29.3, 29.3, 29.1, 29.0, 26.1, 22.4, 22.4, 13.1; high resolution mass spectrum (ESI) m/z 245.9435 ([Mj3 calculated for [C48H,o5N4j3: 245.9441). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1. ?H and ?3C NMR spectra of compound T-12,12,12 can be found in Figure 52.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2 its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 33527-91-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: LiBEt3H (1 mL, 1.0 M in THF, 1 mmol) and Me6TREN (0.26 mL,1 mmol) were added to 5 mL of hexane, precipitating a white powder.THF was slowly added dropwise with stirring until a homogeneoussolution was obtained (approx. 3 mL) Cooling of the solutionat 30 C yielded X-ray quality colorless crystals

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis