A new synthetic route of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine it is a common compound, a new synthetic route is introduced below.

(1) Raw material storage tanks 1,4 are respectively methyl tert-butyl ether solution of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine (mass fraction 15%) And n-hexane solution of n-butyllithium (2.7M), methyl t-butyl group of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine was controlled by a metering pump the flow rate of the ether solution was 50 mL/min, the flow rate of the n-hexane solution of n-butyllithium was 14 mL/min, and the thermostatic module injected into the microchannel reactor was thermostated at 25 C; after constant temperature treatment, the first mixing module of the microchannel reactor was introduced. The reaction was carried out at a reaction temperature of 25 C and a residence time of 10.7 s.(2) reacting the effluent of the first mixing module with diphenylphosphine chloride in a second mixing module, controlling the flow rate of diphenylphosphonium chloride to 7 mL/min by a metering pump, and the reaction temperature is 35 C, and residence time 9.8s.(3) The effluent of the microchannel reactor was acidified to neutral with concentrated hydrochloric acid, extracted with ethyl acetate, dried over anhydrous sodium sulfate and evaporated to give a brown solid N,N-dimethyl-(R)-1- [(S)-2-(diphenylphosphino)ferrocenyl]ethylamine crude,Recrystallization from ethanol gave a pale yellow solid N,N-dimethyl-(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine, N,N-dimethyl The mass ratio of the crude -(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine to ethanol was 1:5; the yield was 82.4%.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Xi’an Modern Chemical Institute; Yang Cuifeng; Chen Tao; Xu Zegang; Mao Mingzhen; Zhang Xiaoguang; Ning Binke; Su Tianduo; Li Bingbo; Wang Yuemei; Wei Tianqi; Zhang Yuanyuan; (7 pag.)CN108456235; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The origin of a common compound about 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound., 33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.426 g, 1.85mmol) in acetonitrile (4 mL) was added 1-bromodecane (1.27 g, 5.73 mmol). Theresulting mixture was heated at reflux with stirring for 18 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with a Buchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T10 10,10,10 (1.16 g, 70%) as a white powder; mp=223-248 C; ?H NMR (300 MHz,CDC13) oe 4.11-4.02 (m, 6H), 3.62-3.53 (m, 6H), 3.41-3.27 (m, 24H), 1.72-1.62 (m, 6H), 1.38-1.14 (m, 42H), 0.85-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.4,61.1, 50.2, 46.9, 31.6, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3, 13.0; high resolution mass spectrum (ESI) m/z 217.9095 ([Mj3 calculated for [C42H93N4j3: 217.9128). See alsoYoshimura et al., 2012, Langmuir 28:9322-9331. ?H and ?3C NMR spectra of compound T-10,10,10 can be found in Figure 50.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The origin of a common compound about 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound., 31886-58-5

EXAMPLE A2; Preparation of (RC,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen-1-yl]cyclo-hexylphosphino-1′-bromoferrocene of the formula (A2) [Cy=cyclohexyl; Me=methyl]; a) Preparation of the Monochlorophosphine X4; 1.3 M s-BuLi solution in cyclohexane (7.7 ml, 10 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for 1.5 hours. Dichlorocyclohexylphosphine (1.51 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed, the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X4.; EXAMPLE 1; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexylphosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; Reaction mixture a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichlorocyclohexylphosphine (0.76 ml, 5 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The reaction mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour to give the monochlorophosphine X7.; EXAMPLE 3; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexyl-phosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; EXAMPLE 4; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-[(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]isopropyl-phosphinoferrocene of the formula (B2) [R=phenyl; Me=methyl, R’=isopropyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.08 ml, 4 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.03 g, 4 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; b) In a vessel, 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at a temperature below -20 C. over a period of 10 minutes. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichloroisopropylphosphine (1.23 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X8.; EXAMPLE ; Preparation of [(RC,RC),(SFc,SFc),(SP,SP)]-1-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl](4-methoxyphenyl)phosphino-1′-[2-(1-N,N-dimethylaminoethyl)-1-ferrocenyl]cyclohexylphosphinoferrocene of the formula (B6); Reaction mixture a): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of 2.57 g (10 mmol) of (R)-N,N-dimethyl-1-ferrocenyl-ethylamine [(R)-Ugi amine] in TBME (15 ml) at such a rate that the temperature remains below -20 C. After the addition, the temperature is allowed to rise to 0 C. and the mixture is stirred at this temperature for another 1.5 hours. The mixture is then cooled to -78 C. and 1.52 ml (10 mmol) of cyclohexyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60 C. The mixture is stirred at -78 C. for a further 30 minutes, the cooling is then removed and the suspension containing the monochlorophosphine (RC,SFc)-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl]cyclohexylchlorophosphine is stirred for a further 1 hour.; Reaction mixture d): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at such a rate th…

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

A new synthetic route of N1,N2-Dimethylethane-1,2-diamine

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

HL1 was prepared by a modification of a method previouslyreported [23] and characterised by 1H NMR spectroscopy. Theligand was obtained as follows: to a solution of 2-hydroxybenzaldehyde(6.10 mL, 82.95 mmol) in absolute ethanol (250 mL),N,N’-dimethylethylenediamine (13.1 g, 100 mmol) and MgSO4were added. The suspension was stirred at room temperature for16 h and then filtered. The filtrate was concentrated under pressureto yield a yellow liquid, which was purified by distillation ina glass oven. Yield: 14.03 g (88%), b.p.: 145 C. 1H NMR (300 Hz,CDCl3) d: 11.52 (s, 1H, OH); 7.21 (td, J = 8.1 and 1.8 Hz, 1H, H6);6.97 (dd, J = 7.5 and 1.8 Hz, 1H, H4); 6.84 (dd, J = 8.4 and 1.2 Hz,1H, H7); 6.77 (td, J = 7.5 and 1.2 Hz, 1H, H5); 3.42 (s, 1H, H2);3.40 (m, 2H, 2H1); 2.59-2.53 (m, 2H, 2H1); 2.28 (s, 6H, 6H9) ppm.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Fondo, Matilde; Doejo, Jesus; Garcia-Deibe, Ana M.; Sanmartin, Jesus; Gonzalez-Bello, Concepcion; Vicente, Ramon; Polyhedron; vol. 100; (2015); p. 49 – 58;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some scientific research about 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Research on new synthetic routes about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound.

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 2.47 ml (20 mmol) of dichlororopropyl- phosphine are added over a period of 10 mintues. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5 Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Discovery of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some scientific research about 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

beta-CD-OTs (500.0 mg, 0.388 mmol) was dissolved in 5 mL dry DMF with 100 mg NaI. N,N?-Dimethylethane-1,2-diamine (1.28 mL, 11.72 mmol) was then added under N2 and the reaction mixture was stirred overnight at 70 C. under N2. The next day the reaction mixture was cooled and precipitated in 50 mL acetone, giving a white precipitate. Unreacted tosylate was removed via the same ion-exchange methods as described above for beta-CD-NH2. Yield=374 mg (80.0%). 1H NMR (300 MHz, D2O, delta): 5.02-4.87 (s, 7H, C1H of CD), 3.93-3.64 (m, 29H, C2H, C3H, C4H, and C5H of CD and NH), 3.61-3.29 (m, 14H, C6H of CD), 3.01-2.36 (m, 10H, N1-CH2, N2-CH2, and N2-(CH3)2).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Thompson, David H.; Kulkarni, Aditya; Deng, Wei; US2015/202323; (2015); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

A new synthetic route of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine it is a common compound, a new synthetic route is introduced below.

6.0g (R) -1- ferrocenyl ethyldimethylamine was added 20mL of dry tert-butyl methyl ether, in an ice bath, under an argon atmosphere was slowly added dropwise 21.5mL 1.3mol / L tert-butyllithium n-hexane solution, warmed to room temperature after dropwise addition, reaction was stirred for 1 hour and then added dropwise dissolved in 20mL of MTBE to the reaction solution at -78 deg.] C 5.52g of p-toluenesulfonyl azide, after the reaction at -78 5 h, slowly warmed to 0 deg.] C, stirred for 10 minutes, dissolved in 250mL of distilled water was added 11.6g of sodium pyrophosphate decahydrate, stirred at room temperature overnight, the reaction was stopped extracted with dichloromethane (3 ¡Á 80mL), the organic layer was dried over anhydrous magnesium sulfate, and rotary evaporation to obtain a reddish black oil, separated by column chromatography (eluent volume of ethyl acetate and triethylamine as the 30: 1 mixture, silica gel 300 to 400 mesh), to give a red-brown oil azide 5.7g, yield of 82%.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Shaanxi Normal University; Chai Yonghai; Ren Xiaochen; He Chunyan; Chen Weiping; Zhang Shengyong; (14 pag.)CN104592313; (2017); B;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

A new synthetic route of N1,N2-Dimethylethane-1,2-diamine

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.110-70-3, N1,N2-Dimethylethane-1,2-diamine it is a common compound, a new synthetic route is introduced below.

To a solution of 2-thiophenecarboxaldehyde (8.6 ml, 104 mmol) in toluene was added A110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; METABASIS THERAPEUTICS, INC.; WO2009/23718; (2009); A2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis