Sources of common compounds: N1,N2-Dimethylethane-1,2-diamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

A single-neck RBFequipped with a magnetic stirrer was charged with methyl2-bromo-2-(4-nitrophenyl)acetate (3,7.33 g, 26.74 mmol) and EtOH (80 mL). After cooling to 0 C in an ice/waterbath. N,N?-dimethylethane-1,2-diamine (23 g, 0.26 mol) was added to the solution over 5 min. Theresulting solution was stirred at 0 C to 25 C overnight. After evaporation invacuo, the crude mixturewas purified on a silica gel column (MeOH: DCM = 10: 90) to afford compound 4 as a yellow solid (6.70 g, 100%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Young, Wendy B.; Barbosa, James; Blomgren, Peter; Bremer, Meire C.; Crawford, James J.; Dambach, Donna; Gallion, Steve; Hymowitz, Sarah G.; Kropf, Jeffrey E.; Lee, Seung H.; Liu, Lichuan; Lubach, Joseph W.; Macaluso, Jen; Maciejewski, Pat; Maurer, Brigitte; Mitchell, Scott A.; Ortwine, Daniel F.; Di Paolo, Julie; Reif, Karin; Scheerens, Heleen; Schmitt, Aaron; Sowell, C. Gregory; Wang, Xiaojing; Wong, Harvey; Xiong, Jin-Ming; Xu, Jianjun; Zhao, Zhongdong; Currie, Kevin S.; Bioorganic and Medicinal Chemistry Letters; vol. 25; 6; (2015); p. 1333 – 1337;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

A new synthetic route of N1,N2-Dimethylethane-1,2-diamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.110-70-3, N1,N2-Dimethylethane-1,2-diamine it is a common compound, a new synthetic route is introduced below.

In a 1000 ml three-necked flask equipped with a dropping funnel and a magnetic stirrer, 31.9 g (0.233 mol) of phosphorus trichloride and 500 ml of anhydrous diethyl ether were charged at room temperature in a nitrogen gas atmosphere, and the mixture was cooled to 5C or less in an ice bath. While the resulting reaction mixture was stirred, 25.0 ml (0.233 mol) of N,N’-dimethylethylenediamine were slowly added dropwise to the reaction mixture. Furthermore, 65.0 ml (0.465 mol) of triethylamine were slowly added dropwise. After the reaction mixture was further stirred for 1.5 hours, it was filtered under pressure in a nitrogen gas atmosphere. After the resulting crystals were washed with anhydrous diethyl ether three times, they were purified by vacuum-distillation (0.4 kPa, 44-52C), and 16.28 g of chloro(N,N’-dimethylethylenediamino)phosphine were obtained in the form of a transparent liquid; the yield was 46%. The resulting compound was identified with a nuclear magnetic resonance analyzer (BRUKER Ultra Shield 300 NMR Spectrometer, manufactured by BRUKER Limited.). The resulting spectral data are shown below. 1H-NMR (300 MHz, solvent: CDCl3, standard substance: tetramethylsilane) delta 3.32 (d, 4H) 2.78 (d, 6H) 31P-NMR (121 MHz, solvent: CDCl3, standard substance: triphenylphosphine) delta 171.30 (s, 1P) The structural formula is shown below.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Kanto Denka Kogyo CO., LTD.; EP1956026; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, 119139-23-0

119139-23-0, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”119139-23-0

General procedure: A reaction flask equipped with a magnetic stirrer was charged with a solution of 3, 4-bisindolylmaleimide (2.1 g, 6.4 mmol) in 100 mL of acetone. Potassium hydroxide (0.40 g, 7.1 mmol) was added to the solution at 0 C and stirred for 0.5 h. Iodomethane (1.6 g, 0.011 mol) or 1-bromooctane (2.4 g, 0.012 mol) was added to the reaction mixture for 3, 4-bisindolyl-1-N-methylmaleimide or 3, 4-bisindolyl-1-N-(n-octyl)maleimide, respectively. The reaction mixture was warmed to room temperature and stirred for 1 h (iodomethane) or 24 h (1-bromooctane). The reaction mixture was concentrated and then dissolved in a mixture of ethyl acetate and water. The organic phase was separated, washed with water once and brine once, dried over anhydrous sodium sulfate. The product was purified by flash chromatography with petroleum ether, ethyl acetate and dichloromethane (V/V = 3:1:2) as eluent.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, 119139-23-0

Reference£º
Article; Zhang, Qianfeng; Chang, Guanjun; Zhang, Lin; Chinese Chemical Letters; vol. 29; 3; (2018); p. 513 – 516;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Research on new synthetic routes about N1,N2-Dimethylethane-1,2-diamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

110-70-3, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound.

The compound N,N’-dimethylethylenediamine (20 g, 0.226 mol)Soluble in 100mL of dichloromethane,50 mL of Boc anhydride (14.8 g, 0.068 mol) was added dropwise in an ice water bath.Dichloromethane mixture,Drop the room temperature reaction,The progress of the reaction was monitored by TLC (DCM: MeOH = 10:1). filter,The dry filtrate was concentrated under reduced pressure at 40 C.After the column, the product was 9g.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Patent; Sichuan Bai Li Pharmaceutical Co., Ltd.; Zhu Yi; Li Jie; Wan Weili; Zhuo Shi; Li Gangrui; (28 pag.)CN109106951; (2019); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of Tris[2-(dimethylamino)ethyl]amine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound.

To a solution of tris(2-dimethylaminoethyl)amine (0.326 g, 1.41 mmol) in acetonitrile (4 mL) was added 1-bromooctadecane (1.41g, 4.23 mmol). The resulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetonemixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-18,18,18 (1.48 g, 85%) as a white powder; mp=227-259 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.13-4.02 (m, 6H), 3.65-3.58 (m, 6H), 3.46-3.38 (m, 6H), 3.35 (s, 18H), 1.78-1.66 (m, 6H), 1.41-1.37 (m, 90H), 0.89-0.82 (m, 9H); high resolutionmass spectrum (ESI) in/z 330.0376 ([Mj3 calculated for [C66H,4,N4j3: 330.0380). ?H spectmm of compound T-18,18,18 can be found in Figure 55.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

N, N’-Dimethylethylenediamine (5.00g, 57mmol) was dissolved in CH2Cl2 (25mL) and cooled to 0C. Di-tert-butyl dicarbonate (5.00g, 22mmol) was dissolved in CH2Cl2 (25mL) and added dropwise to the reaction flask at 0C, and then warmed to room temperature and stirred overnight. The reaction solution was quenched with H2O (20mL), and extracted with CH2Cl2 (40mL x 2), and the combined organic layers dried with Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel using CH3OH/CH2Cl2 (1/20, V/V) as eluent to give 2 as colorless oil (4.37g, 81%), 1H NMR (400MHz, CDCl3) delta 3.39-3.36 (m, 2H, CH2), 2.95-2.90 (s, 3H, CH3), 2.76 (m, 2H, CH2), 2.48 (s, 3H, CH3), 1.48 (s, 9H, (CH3)3); HRMS (ESI) m/z [M+H]+ Calcd for C9H21N2O2+: 189.1603. Found: 189.1601.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Yang, Hao; Ouyang, Yifan; Ma, Hao; Cong, Hui; Zhuang, Chunlin; Lok, Wun-Taai; Wang, Zhe; Zhu, Xuanli; Sun, Yutong; Hong, Wei; Wang, Hao; Bioorganic and Medicinal Chemistry Letters; vol. 27; 20; (2017); p. 4635 – 4642;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 119139-23-0

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, cas is 119139-23-0,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound., 119139-23-0

Example 1 12,13-(2,3-dihydroxy-butan-1,4-yl)-6,7,12,13-tetrahydro-5-oxo-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole (Compound 14) Palladium dichloride (7.4 g, 41.6 mmoles) was added to a solution of acryrubin A Compound 1a (2.9 g, 8.86 mmol) (prepared as described in Faul M M, Winneroski L L and Krumrich C A, Journal of Organic Chemistry, 1998, 63, 6053-6058) in DMF (100 mL) at 90 C. The reaction temperature was kept at 90 C. for 1 hr. The mixture was cooled and conc. HCl (50 mL), then water (50 mL) was added. The mixture was poured over ice and the resulting precipitate was filtered off. The solids were washed with H2O and MeOH, then dissolved in THF (200 mL) and acetone (200 mL) and the remaining solids were filtered off. The solution was filtered through a plug of silica gel and the solvent was removed under vacuum. The resulting residue was diluted with MeOH, the solids were filtered and washed with MeOH then dried to provide acryflavin A Compound 1b (2 g, 70%) as a brown solid.

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Wilson, Lawrence J.; Murray, William V.; Yang, Shyh-Ming; Yang, Cangming; Wang, Bingbing; US2007/249590; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound. Here is a downstream synthesis route of the compound., 110-70-3

1,4-Dimethyl-3-(4-nitrophenyl)piperazin-2-one (3); A 100-mL single-neck round-bottomed flask equipped with a magnetic stirrer was purged with nitrogen, charged with N1,N2-dimethylethane-1,2-diamine (1.61 g, 18.2 mmol), ethanol (5 mL) and 2 (500 mg, 1.82 mmol), and the reaction was stirred at room temperature for 1 h. After this time, the reaction mixture was evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography to afford an 89% yield (404 mg) of 3 as a yellow oil: 1H NMR (500 MHz, DMSO-d6) delta 8.18 (d, 2H, J=8.5 Hz), 7.60 (d, 2H, J=8.5 Hz), 3.87 (s, 1H), 3.61 (td, 1H, J=12.0, 4.0 Hz), 3.26 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 3.02 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 2.84 (s, 3H), 2.64 (td, 1H, J=12.0, 4.0 Hz), 2.06 (s, 3H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Zhao, Zhongdong; Zhichkin, Pavel E.; Stafford, Douglas G.; Kropf, Jeffrey E.; BLOMGREN, Peter A.; Currie, Kevin S.; Lee, Seung H.; Mitchell, Scott A.; Xu, Jianjun; Schmitt, Aaron C.; US2009/82330; (2009); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Sources of common compounds: 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.

(S)-Ugi-amine 1 (5.14g, 20mmol) was dissolved in 50mL of diethyl ether. Under nitrogen and ice salt bath cooling, n-butyl lithium (16mL, 2.5mol / L) was added dropwise to the reaction system, After the completion, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Chlorodiphenylphosphine (8.82 g, 40 mmol) was added dropwise under ice-cooling, and the mixture was slowly warmed to room temperature and stirred for 12 hours. The reaction was quenched with saturated sodium bicarbonate solution. Extracted with dichloromethane, dried over anhydrous sodium sulfate, concentration, column chromatography to obtain compound 2 (5.38g, 61%).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

A new synthetic route of N1,N2-Dimethylethane-1,2-diamine

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.110-70-3, N1,N2-Dimethylethane-1,2-diamine it is a common compound, a new synthetic route is introduced below.

2, phosphorus trichloride (27.5g, 0.2mol) and triethylamine (40.5g, 0.4mol) was dissolved in 200mL n-hexane, the solution was placed in an ice water bath cooled to 0-5 C;N,N-dimethylethylenediamine (17.6 g, 0.2 mol) was slowly added dropwise to the solution under stirring.Hexane solution; after the addition is complete, the ice water bath is removed, and the temperature is naturally raised to room temperature, continue to react 4h; reaction is over, filter, collect the filtrate, after testing,Which contains the product of formula (III) wherein both R groups in formula (III) are methyl;

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Wanhua Chemical Group Co., Ltd.; Lv Yingdong; Zhu Longlong; Liu Junxian; Song Mingyan; Xue Yongyong; Li Jinming; Zhang Tao; Li Yuan; (10 pag.)CN107915758; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis