This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of N1,N2-Dimethylethane-1,2-diamine, We look forward to the emergence of more reaction modes in the future.
110-70-3, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.110-70-3, name is N1,N2-Dimethylethane-1,2-diamine. A new synthetic method of this compound is introduced below.
To a solution of compound 9-3 (10 g, 36.5 mmol) in EtOH was added dropwise compound 9-3-1 (39 mL, 365 mmol) under nitrogen atmosphere at 0 C., and then the reaction solution was stirred at 20 C. for 2 h, followed by concentration. The residue was purified by column chromatography to give the title compound 9-4 (yellow solid, 5.5 g, Yield 56%). 1H NMR (400 MHz, CDCl3): delta ppm 8.16 (d, J=8.8 Hz, 2H), 7.59 (d, J=8.8 Hz, 2H), 3.80 (s, 1H), 3.60-3.80 (m, 1H), 3.15-3.30 (m, 1H), 3.00-3.10 (m, 1H), 2.93 (s, 3H), 2.60-2.75 (m, 1H), 2.15 (s, 3H).
This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of N1,N2-Dimethylethane-1,2-diamine, We look forward to the emergence of more reaction modes in the future.
Reference£º
Patent; Hubei Bio-Pharmaceutical Industrial Technological Institute Inc.; Humanwell Healthcare (Group) Co., Ltd.; Wang, Xuehai; Wu, Chengde; Xu, Yong; Shen, Chunli; Li, Li’e; Hu, Guoping; Yue, Yang; Li, Jian; Guo, Diliang; Shi, Nengyang; Huang, Lu; Chen, Shuhui; Tu, Ronghua; Yang, Zhongwen; Zhang, Xuwen; Xiao, Qiang; Tian, Hua; Yu, Yanping; Chen, Hailiang; Sun, Wenjie; He, Zhenyu; Shen, Jie; Yang, Jing; Tang, Jing; Zhou, Wen; Yu, Jing; Zhang, Yi; Liu, Quan; (251 pag.)US2017/313683; (2017); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis