Application of 126456-43-7, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Patent, and a compound is mentioned, 126456-43-7, (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, introducing its new discovery.
Method of producing cis-1-aminoindan-2-ol
1,2-di-substituted indan expressed by general formula (I) wherein X is a substituent which can be drawn out under an acidic condition to form a carbocation at 1-position of an indan skeleton, Y is a halogen atom, and X and Y can be in either cis- or trans-configuration forming either a racemic body or an optically active substance; or 1,2-di-substituted indan expressed by general formula (I’) wherein X is a substituent which can be drawn out under an acidic condition to form a carbocation at 1-position of an indan skeleton, and X and OH group can be in either cis- or trans-configuration forming either a racemic body or an optically-active substance; or cis-1,2-epoxyindan expressed by general formula (VI) wherein R is phenyl or a lower alkyl group, oxazoline ring is in cis-configuration forming either a racemic body or an optically active substance is reacted, under an acidic condition, with a nitrile expressed by general formula (II) wherein R is phenyl or a lower alkyl group to produce cis-1-aminoindan-2-ol expressed by general formula (V) wherein NH2 and OH groups are in cis-configuration forming either a racemic body or an optically-active substance. STR1
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 126456-43-7. In my other articles, you can also check out more blogs about 126456-43-7
Reference£º
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis