Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 492-08-0
Synthetic Route of 492-08-0, In homogeneous catalysis, catalysts are in the same phase as the reactants. Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 492-08-0, Name is (+)-Sparteine, molecular formula is C15H26N2. In a Article£¬once mentioned of 492-08-0
Characterization of a rhodium-sparteine complex, [((-)-sparteine) Rh(eta4-COD)]+: Crystal structure and DNMR/DFT studies on ligand-rotation dynamics
A cationic rhodium-sparteine complex, [((-)-sparteine)Rh(eta4- COD)]+ (1+; COD = 1,5-cyclooctadiene) was obtained, isolated as its tetrafluoroborate salt (1BF4), and characterized using X-ray crystallography and multinuclear (1H, 13C) NMR spectroscopy. This is the first structurally characterized sparteine complex of rhodium. The Rh-N bonds are unusually long (2.214(3) and 2.242(3) A), apparently due to steric repulsion between COD and sparteine. 1H NMR exchange experiments (EXSY) demonstrate a dynamic process that results in an overall 180 rotation of the COD methine protons in solution (CD 2Cl2) with a first-order rate constant of 460 s -1 at the coalescence temperature (314 K) and interpolated rate constant of 150 s-1 at 298 K. Temperature-dependent NMR studies yield DeltaH? = 13.0 ¡À 0.3 kcal mol-1, DeltaS? = -5 ¡À 1 cal mol-1 K-1, such that DeltaG?298 = 14.3 ¡À 0.3 kcal mol-1. DFT studies (B3LYP) indicate that the loosely bound (-)-sparteine ligand rotates through a pseudo-tetrahedral transition state where both ligands are rotated approximately 90 relative to each other. While both ligands remain bound (eta4-COD, kappa2-sparteine), bonding to sparteine is weakened much more than bonding to COD in the transition state. DFT computed DeltaG?298 and DeltaS? values (15.55 kcal mol -1 and -2.67 cal mol-1 K-1, respectively) agree very well with the experimental values. Attempts to find alternative mechanisms involving partial dechelation of COD and (-)-sparteine yielded slightly higher barriers along with positive DeltaS values for intermediate formation.
Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 492-08-0
Reference£º
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis