Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 111-24-0, is researched, Molecular C5H10Br2, about Preparation and study of spirocyclic cationic side chain functionalized polybiphenyl piperidine anion exchange membrane, the main research direction is polybiphenyl piperidine anion exchange membrane.Category: chiral-nitrogen-ligands.
Research on the ion conductivity and mech. stability of anion exchange membranes (AEMs) has achieved great progress, it is more urgent to prepare AEMs with high alkali stability. Azaspirocyclic cations are among the most alkali-stable cations. In this study, a synthesized long-chain 3-(3-(1-(8-bromooctyl) piperidin-4-yl) propyl)-6-azaspiro[5.5] undecan-6-ium bromide(BOP-ASU) cation was introduced into a portion of a piperidine ring on a PBP backbone to prepare PBP-BOP-ASU, and AEMs based on PBP-ASU and PBP-BOP-ASU were prepared The structure of each product was characterized (1H NMR, MS), and the prepared anion exchange membrane was also characterized using micromorphol. (SEM, TEM, AFM) and performance tests (TGA, WU, SR, ion conductivity, alkali stability). The PBP-BOP-ASU (8% membrane) showed the highest ion conductivity (117.43 mS/cm) at 80 °C. In addition, it showed excellent alkali stability in a test environment of 2 M NaOH solution at 80 °C for 1400 h. Moreover, the introduction of side chain spiro cations could improve the microscopic phase separation structure of the AEMs, and it also increased their ionic conductivity, thus ensuring the potential for their application in anion exchange membrane fuel cells.
The article 《Preparation and study of spirocyclic cationic side chain functionalized polybiphenyl piperidine anion exchange membrane》 also mentions many details about this compound(111-24-0)Category: chiral-nitrogen-ligands, you can pay attention to it, because details determine success or failure
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis