Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. 126456-43-7
The reactions of enantiomerically pure (1R,2S)-(+)-cis-1-aminoindan-2-ol, (1S,2R)-(-)-cis-1-aminoindan-2-ol, and racemic trans-1-aminoindan-2-ol with trimethylaluminum, -gallium, and -indium produce the intramolecularly stabilized, enantiomerically pure dimethylmetal-1-amino-2-indanolates (1R,2S)-(+)-cis-Me2-AlO-2-C*HC7H6-1- C*HNH2 (1), (1S,2R)-(-)-cis-Me2AlO-2-C*HC 7H6-1-C*HNH2 (2), (1R,2S)-(+)-cis-Me 2GaO-2-C*HC7H6-1-C*HNH2 (3), (1R,2S)-(+)-cis-Me2InO-2-C*HC7H 6-1-C*HNH2 (4), (1S,2R)-(-)-cis-Me 2InO-2-C*HC7H6-1-C*HNH2 (5), and racemic (+/-)-trans-Me2InO-2-C*HC7H 6-1-C*HNH2 (6). The compounds were characterized by 1H NMR, 13C NMR, 27Al NMR and mass spectra as well as 1 and 3 to 6 by determination of their crystal and molecular structures. The dynamic dissociation/association behavior of the coordinative metal-nitrogen bond was studied by low temperature 1H NMR spectroscopy.
Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. In my other articles, you can also check out more blogs about 126456-43-7. 126456-43-7
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis