The dynamic chemical diversity of the numerous elements, ions and molecules that constitute the basis of life provides wide challenges and opportunities for research. Application of 126456-43-7
The determination of the enantiopurity and the concentration of chiral compounds by chiroptical sensing with molecular probes is increasingly attractive for high-throughput screening applications including streamlined asymmetric reaction development. In this study, we use stereodynamic aluminum biphenolate complexes for quantitative ee and concentration analysis of amino alcohols and alpha-hydroxy acids. An important feature of the tropos biphenolate ligand used is the presence of phenylacetylene antennae for optimal chirality recognition and CD/UV responses at high wavelengths. The complexation-driven chirality amplification yields strong CD signals which allows quantitative chiroptical sensing with good accuracy. We show that aluminate biphenolate sensors can exhibit linear and nonlinear correlations between the induced CD signals and the enantiomeric composition or concentration of the chiral substrate.
We very much hope you enjoy reading the articles and that you will join us to present your own research about 126456-43-7
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis