Researchers are common within chemical engineering and are often tasked with creating and developing new chemical techniques, frequently combining other advanced and emerging scientific areas. Synthetic Route of 108-47-4Catalysts allow a reaction to proceed via a pathway that has a lower activation energy than the uncatalyzed reaction. In an article, authors is Grau, Jordi, once mentioned the new application about Synthetic Route of 108-47-4.
The synthesis, characterization, DNA interaction and antiproliferative behavior of new pi-arene ruthenium(II) piano-stool complexes with nitrogen ligands are described. Three series of organometallic compounds of formulae [RuCl2(eta6-p-cym)L] were synthesized (with L = 2-, 3- or 4-methylpyridine; L = 2,3-, 2,4-, 2,5-, 3,4-, 3,5-dimethylpyridine and L = 1,2-, 1,3- 1,4-methylaminobenzene). The crystal structures of [RuCl 2(p-cym)(4-methylpyridine)], [RuCl2(p-cym)(3,4- dimethylpyridine)] and [RuCl2(p-cym)(1,4-methylaminobenzene)] were resolved and the characterization was completed by spectroscopic UV-vis, FT-IR and 1H NMR studies. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple. The interaction with plasmid pBR322 DNA was studied through the examination of the electrophoretical mobility and atomic force microscopy, and interaction with ct-DNA by circular dichroism, viscosity measurements and fluorescence studies based on the DNA-ethidium bromide complex. The antiproliferative behavior of the series with L = methylpyridine was assayed against two tumor cell lines, i.e. LoVo and MiaPaca. The results revealed a moderate cytotoxicity with a higher activity for the LoVo cell line compared to the MiaPaca one.
Consequently, the presence of a catalyst will permit a system to reach equilibrium more quickly, but it has no effect on the position of the equilibrium as reflected in the value of its equilibrium constant. I hope my blog about 108-47-4 is helpful to your research. Synthetic Route of 108-47-4
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis