Chemistry, like all the natural sciences, begins with the direct observation of nature¡ª in this case, of matter.131-53-3, Name is Dioxybenzone, SMILES is O=C(C1=CC=C(OC)C=C1O)C2=CC=CC=C2O, belongs to chiral-nitrogen-ligands compound. In a document, author is Wei, Jinhu, introduce the new discover, Recommanded Product: Dioxybenzone.
Iron-Catalyzed Highly Enantioselectivecis-Dihydroxylation of Trisubstituted Alkenes with Aqueous H2O2
Reliable methods for enantioselectivecis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complexcis-alpha-[Fe-II(2-Me-2-BQPN)(OTf)(2)], which bears a tetradentate N(4)ligand (Me-2-BQPN=(R,R)-N,N ‘-dimethyl-N,N ‘-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiralcis-diols in yields of up to 98 % and up to 99.9 %eewhen using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including(18)O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiralcis-Fe-V(O)(2)reaction intermediate as an active oxidant. Thiscis-[Fe-II(chiral N(4)ligand)](2+)/H(2)O(2)method could be a viable green alternative/complement to the existing OsO4-based methods for asymmetric alkene dihydroxylation reactions.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 131-53-3 is helpful to your research. Recommanded Product: Dioxybenzone.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
,Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis