Chemistry is a science major with cience and engineering. The main research directions are chemical synthesis, new energy materials, nano-ceramics, nano-hybrid composite materials, preparation and modification of special coatings, In an article, 108-47-4, name is 2,4-Dimethylpyridine, introducing its new discovery. 108-47-4
Background: Quantitative structure?mobility relationships are proposed to estimate the electrophoretic mobility of diverse sets of analytes in capillary zone electrophoresis using Abraham solvation parameters of analytes, namely the excess molar refraction, polarizability, hydrogen bond acidity, basicity, and molar volume. Multiple linear regression (MLR) as a linear model, adaptive neuro-fuzzy inference system (ANFIS), and artificial neural network (ANN) methods were used to evaluate the nonlinear behavior of the involved parameters. The applicability of the Abraham solvation parameters to the mobility prediction of analytes was studied employing various datasets consisting of organic acids, benzoate derivatives, pyridines, and ammoniums. Method: To evaluate the simulation ability of the proposed models, datasets were subdivided into training and test sets in the ratio of 3:1. To evaluate the goodness of fit of the models, squared correlation coefficients (R2) between experimental and calculated mobilities were calculated. Results: R2values were better than 0.78for all datasets except for organic acids, in which the ANFIS model showed better ability to predict their mobility than that of MLR and ANN. In addition, the accuracy of the models is calculated using mean percentage deviation (MPD) and the overall MPD values for test sets were better than 15% for all models. Conclusion: The results showed the ability of the developed models to predict the electrophoretic mobility of analytes in capillary zone electrophoresis.
The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. 108-47-4, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 108-47-4, in my other articles.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis