Having gained chemical understanding at molecular level, Reference of 108-47-4, Name is 2,4-Dimethylpyridine, belongs to chiral-nitrogen-ligands compound, is a common compound. Reference of 108-47-4 chemistry graduates may choose to apply this knowledge in almost unlimited ways, as it can be used to analyze all matter and therefore our entire environment. In an article, authors is Chirico, once mentioned the new application about Reference of 108-47-4.
Reconciliation of standard entropies Delta0TSmo(cal) derived from calorimetric and thermophysical property studies with standard entropies Delta0TSmo(stat) derived with assigned vibrational spectra and the methods of statistical mechanics is used to demonstrate consistency between thermophysical properties for the six dimethylpyridines (Chemical Abstracts registry numbers: 2,3-dimethylpyridine, 583-61-9; 2,4-dimethylpyridine, 108-47-4; 2,5-dimethylpyridine, 589-93-5; 2,6-dimethylpyridine, 108-48-5; 3,4-dimethylpyridine, 583-58-4; 3,5-dimethylpyridine, 591-22-0). Properties considered include the critical temperature, critical pressure, vapor pressure, heat capacities of the solid and liquid, second and third virial coefficients, enthalpies of vaporization, vibrational assignment, and methyl group rotational barrier. The temperature-dependent properties are shown to be consistent over the entire temperature range from near T = 250 K to T = 650 K ( ? 0.95·Tc, where Tc denotes the critical temperature). The analyses validate the methods and results reported previously, which provided the information required to derive the temperature-dependent properties to near Tc, i.e. into the temperature and pressure range typical of petroleum processing conditions. Sensitivities of Delta0TSmo(stat) to errors in the vibrational assignment and to the size of methyl group rotational barriers are discussed. Vibrational assignments for vapor-phase fundamentals at low wave number for 2,3-dimethylpyridine and 3,4-dimethylpyridine are shown to be in error and are corrected.
The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction. the role of 108-47-4, and how the biochemistry of the body works.Application of 108-47-4
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis