Modeling chemical reactions helps engineers virtually understand the chemistry, optimal size and design of the system, and how it interacts with other physics that may come into play. Application of 126456-43-7
The present invention relates to an analytical method that includes providing a sample potentially containing a chiral analyte that can exist in stereoisomeric forms, and providing a probe selected from the group consisting of coumarin-derived Michael acceptors, dinitrofluoroarenes and analogs thereof, arylsulfonyl chlorides and analogs thereof, arylchlorophosphines and analogs thereof, aryl halophosphites, and halodiazaphosphites. The sample is contacted with the probe under conditions to permit covalent binding of the probe to the analyte, if present in the sample; and, based on any binding that occurs, the absolute configuration of the analyte in the sample, and/or the concentration of the analyte in the sample, and/or the enantiomeric composition of the analyte in the sample is/are determined. The probe may be a coumarin-derived Michael acceptor, a di nitrofluoroarene or analog thereof, an arylsulfonyl chloride or analog thereof, an arylchlorophosphine or analog thereof, an aryl halophosphite, or a halodiazaphosphite.
Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 126456-43-7
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis