Application of 31886-58-5

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Preparation of A1 (mixture of diastereomers)15.5 ml (23.2 mmol) of t-BuLi (1.5 M in pentane) are added dropwise to a solution of 5.98 g (23.2 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 40 ml of diethyl ether (DE) at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. This gives a solution of the compound X2 which is added via a cannula to a cooled suspension of the monochlorophosphine X1 at such a rate that the temperature does not exceed -30C. After stirring the mixture at -30C for a further 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 2 hours. The reaction mixture is admixed with 20 ml of water. The organic phase is separated off, dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. Chromatographic purification (silica gel 60; eluent = heptane/ethyl acetate(EA)/NEthyl3(Net3) 85:10:5) gives 1 1.39 g of the desired product as a mixture of 2 diastereomers. The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life. Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis