Flexible application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine in synthetic route

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, below Introduce a new synthetic route.

a) Preparation of the chlorophosphine (X3)3.85 ml (5 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 1.29 g (5 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 5 ml of TBME at <-20C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 0.62 ml (5 mmol) of dichloroisopropylphosphine is added dropwise at such a rate that the temperature does not exceed -60C. Further stirring at -78C for 30 minutes and subsequently at room temperature for one hour gives a suspension comprising the chlorophosphine X3; Example B17: Preparation of the compound (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen- i-yllcyclohexylphosphino-i '-bis-beta.S-d^trifluoromethylJphenyllphosphinoferrocene (B17):4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours to give a suspension of 1-bromo-1 '-lithioferrocene X5.In a second reaction vessel, 7.7 ml (10 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of TBME at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0 and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 1.51 ml (10 mmol) of dichlorocyclohexyl- phosphine are added. Further stirring at -78C for 30 minutes and, after removal of cooling, at room temperature for another one hour gives a suspension of the chlorophosphine X4 which is subsequently added at a temperature of <-10C to the suspension of 1-bromo-1 '-lithio- ferrocene X5. The cooling is then removed and the mixture is stirred at room temperature for a further 1.5 hours. After renewed cooling to <-50C, 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. After the addition, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes. It is then cooled to -20C and 4.63 g (10 mmol) of bis[3,5-di(trifluoromethyl)phenyl]chlorophosphine are added. The cooling is subsequently removed and the mixture is stirred at room temperature for another 1.5 hours. The reaction mixture is admixed with 1 N NaOH and extracted. The organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is subsequently heated at 150C for one hour. Chromatographic purification (silica gel 60; eluent = hexane/ethyl acetate 8:1 ) gives the compound B17 as a yellow solid (yield: 66%). 1H NMR (300 MHz, C6D6): delta 1.25 (d, 3H, J = 6.7 Hz), 1.00-2.29 (m, 1 1 H), 2.20 (s, 6H), 3.78 (m, 1 H), 4.02 (m, 1 H), 4.04 (s, 5H), 4.09 (m, 1 H), 4.14 (m, 1 H), 4.17 (m, 1 H), 4.21 (m, 1 H), 4.40 (m, 2H), 4.60 (m, 1 H), 7.80 (d, 2H, J = 6.8 Hz), 8.00 (d, 4H, J = 6.0 Hz). 31P NMR (121.5 MHz, C6D6): delta -27.1 (s); -14.1 (s).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis