With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.
beta-CD-OTs (500.0 mg, 0.388 mmol) was dissolved in 5 mL dry DMF with 100 mg NaI. N,N?-Dimethylethane-1,2-diamine (1.28 mL, 11.72 mmol) was then added under N2 and the reaction mixture was stirred overnight at 70 C. under N2. The next day the reaction mixture was cooled and precipitated in 50 mL acetone, giving a white precipitate. Unreacted tosylate was removed via the same ion-exchange methods as described above for beta-CD-NH2. Yield=374 mg (80.0%). 1H NMR (300 MHz, D2O, delta): 5.02-4.87 (s, 7H, C1H of CD), 3.93-3.64 (m, 29H, C2H, C3H, C4H, and C5H of CD and NH), 3.61-3.29 (m, 14H, C6H of CD), 3.01-2.36 (m, 10H, N1-CH2, N2-CH2, and N2-(CH3)2).
110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.
Reference£º
Patent; Thompson, David H.; Kulkarni, Aditya; Deng, Wei; US2015/202323; (2015); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis