Analyzing the synthesis route of 31886-58-5

With the synthetic route has been constantly updated, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belong chiral-nitrogen-ligands compound,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,31886-58-5,Molecular formula: C14H19FeN,mainly used in chemical industry, its synthesis route is as follows.,31886-58-5

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at -78C over a period of 10 minutes. The mixture is then heated to room temperature while stirring and maintained at this temperature for 1.5 hours. It is then cooled back down to -78 0C and 2.71 ml(20 mmol) of dichlorophenylphosphine are added over a period of 10 minutes. After stirring at -78C for 10 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours.

With the synthetic route has been constantly updated, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,belong chiral-nitrogen-ligands compound

Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis