The chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,cas is 31886-58-5, mainly used in chemical industry, its synthesis route is as follows.
6.0g (R) -1- ferrocenyl ethyldimethylamine was added 20mL of dry tert-butyl methyl ether, in an ice bath, under an argon atmosphere was slowly added dropwise 21.5mL 1.3mol / L tert-butyllithium n-hexane solution, warmed to room temperature after dropwise addition, reaction was stirred for 1 hour and then added dropwise dissolved in 20mL of MTBE to the reaction solution at -78 deg.] C 5.52g of p-toluenesulfonyl azide, after the reaction at -78 5 h, slowly warmed to 0 deg.] C, stirred for 10 minutes, dissolved in 250mL of distilled water was added 11.6g of sodium pyrophosphate decahydrate, stirred at room temperature overnight, the reaction was stopped extracted with dichloromethane (3 ¡Á 80mL), the organic layer was dried over anhydrous magnesium sulfate, and rotary evaporation to obtain a reddish black oil, separated by column chromatography (eluent volume of ethyl acetate and triethylamine as the 30: 1 mixture, silica gel 300 to 400 mesh), to give a red-brown oil azide 5.7g, yield of 82%.
As the rapid development of chemical substances, we look forward to future research findings about 31886-58-5
Reference£º
Patent; Shaanxi Normal University; Chai Yonghai; Ren Xiaochen; He Chunyan; Chen Weiping; Zhang Shengyong; (14 pag.)CN104592313; (2017); B;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis