Archives for Chemistry Experiments of 126456-43-7

Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. In my other articles, you can also check out more blogs about 126456-43-7

126456-43-7, In homogeneous catalysis, catalysts are in the same phase as the reactants. Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 126456-43-7, Name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, molecular formula is C9H11NO. In a Article,once mentioned of 126456-43-7

Screening of a library of hemisalen ligands in asymmetric H-transfer: Reduction of aromatic ketones in water

A library of chiral hemisalen ligands (30) was realized. The ligands were synthesized by the condensation of salicylaldehyde derivatives with amino-alcohols (amino-indanol or substituted amino-ethanol) and characterized. These ligands associated with ruthenium (II) precursors were tested on the asymmetric transfer hydrogenation (ATH) of aromatic ketones by sodium formate in water. The different substituent pattern on the ligand (electronic and hindrance effects on different positions) as well as the ruthenium precursor were investigated. The best compromise in terms of conversion and chiral induction led to the complex [RuCl2(mesitylene)]2 coordinated to (1S,2R)-1-((E)-(3-(dimethyl(phenyl)silyl)-2-hydroxy-5-methoxy benzylidene) amino)-2,3-dihydro-1H-inden-2-ol (L25). It reduces acetophenone in 95% yield and 91% ee in 18 h at 30C.

Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. In my other articles, you can also check out more blogs about 126456-43-7

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis