In homogeneous catalysis, the catalyst is in the same phase as the reactant. The number of collisions between reactants and catalyst is at a maximum.In a patent, 126456-43-7, name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, introducing its new discovery. Application In Synthesis of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol
Design and synthesis of new potent C2-symmetric HIV-1 protease inhibitors. Use of L-mannaric acid as a peptidomimetic scaffold
A study on the use of derivatized carbohydrates as C2-symmetric HIV-1 protease inhibitors has been undertaken. L-Mannaric acid (6) was bis-O- benzylated at C-2 and C-5 and subsequently coupled with amino acids and amines to give C2-symmetric products based on C-terminal duplication. Potent HIV protease inhibitors, 28 K(i) = 0.4 nM and 43 K(i) = 0.2 nM, have been discovered, and two synthetic methodologies have been developed, one whereby these inhibitors can be prepared in just three chemical steps from commercially available materials. A remarkable increase in potency going from IC50 = 5000 nM (23) to IC50 = 15 nM (28) was observed upon exchanging – COOMe for -CONHMe in the inhibitor, resulting in the net addition of one hydrogen bond interaction between each of the two -NH- groups and the HIV protease backbone (Gly 48/148). The X-ray crystal structures of 43 and of 48 have been determined (Figures 5 and 6), revealing the binding mode of these inhibitors which will aid further design.
We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 126456-43-7, and how the biochemistry of the body works.Application In Synthesis of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol
Reference£º
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis