Tang, Cen; Ku, Kang Hee; Lennon Luo, Shao-Xiong; Concellon, Alberto; Wu, You-Chi Mason; Lu, Ru-Qiang; Swager, Timothy M. published an article about the compound: 1,2-Bis(diphenylphosphino)ethane( cas:1663-45-2,SMILESS:P(CCP(C1=CC=CC=C1)C2=CC=CC=C2)(C3=CC=CC=C3)C4=CC=CC=C4 ).COA of Formula: C26H24P2. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1663-45-2) through the article.
The capping reagent plays an essential role in the functional properties of gold nanoparticles (AuNPs). Multiple stimuli-responsive materials are generated via diverse surface modification. The ability of the organic ligand shell on a gold surface to create a porous shell capable of binding small mols. is demonstrated as an approach to detect mols., such as methane, that would be otherwise difficult to sense. Thiols are the most studied capping ligands of AuNPs used in chemiresistors. Phosphine capping groups are usually seen as stabilizers in synthesis and catalysis. However, by virtue of the pyramidal shape of triarylphosphines, they are natural candidates to create intrinsic voids within the ligand shell of AuNPs. In this work, surface-functionalized (capped) AuNPs with chelating phosphine ligands are synthesized via two synthetic routes, enabling chemiresistive methane gas detection at sub-100 ppm levels. These AuNPs are compared to thiol-capped AuNPs, and studies were undertaken to evaluate structure-property relationships for their performance in the detection of hydrocarbons. Polymer overcoatings applied to the conductive networks of the functionalized AuNP arrays were shown to reduce resistivity by promoting the formation of conduction pathways with decreased core-core distance between nanoparticles. Observations made in the context of developing methane sensors provide insight relevant to applications of phosphine or phosphine-containing surface groups in functional AuNP materials.
In some applications, this compound(1663-45-2)COA of Formula: C26H24P2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis