In heterogeneous catalysis, the catalyst is in a different phase from the reactants. Safety of 2,4-Dimethylpyridine, At least one of the reactants interacts with the solid surface in a physical process called adsorption in such a way. 108-47-4, name is 2,4-Dimethylpyridine. In an article£¬Which mentioned a new discovery about 108-47-4
Carbon-Hydrogen Bond Dissociation Energies in Alkylbenzenes. Proton Affinities of the Radicals and the Absolute Proton Affinity Scale
Rate constants (k) were measured for proton-transfer reactions from alkylbenzene ions RH+ to a series of reference bases B, i.e., RH+ + B -> BH+ + R*.For exothermic reactions (DeltaH = -1) k is large, but as weaker bases are used and the reaction becomes thermoneutral the collision efficiency decreases sharply.The variation of k with DeltaH determines the proton affinity (PA) of the radical R* relative to a set of reference bases to within +/- 0.5 kcal mol-1.For example, the reaction C6H5CH3+ + B -> BH+ + C6H5CH2* is fast (reaction efficiency = k/kcol >/= 0.5) when B = MeO-t-Bu or stronger bases, but k/kcol is significantly smaller when B is n-Pr2O or weaker bases.From the falloff curve of reaction efficiency vs.PA(B), we find PA(n-Pr2O) = PA(C6H5CH2*) + 0.8 kcal mol-1 = 200.0 kcal mol-1.Since PA(C6H5CH2*) is obtained from known thermochemical data, this relation defines the absolute PA of n-Pr2O.Through a ladder of known PA, we then obtain PA(i-C4H8) = 186.8 kcal mol-1; we also obtain the absolute PAs of other oxygen bases.Falloff curves of reaction efficiencies of 3-FC6H4CH3+, C6H5C2H5+, C6H5-n-C3H7+, and C6H5-i-C3H7+ with these reference bases give then the following PAs of R* and R-H bond dissociation energies (Do) (all in kcal mol-1) as R*, PA(R*), Do(R-H): 3-FC6H4CH2*, 197.2, 89.4;
I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 108-47-4, help many people in the next few years.Safety of 2,4-Dimethylpyridine
Reference£º
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis