Brief introduction of 126456-43-7

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 126456-43-7

Synthetic Route of 126456-43-7, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.126456-43-7, Name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, molecular formula is C9H11NO. In a Article£¬once mentioned of 126456-43-7

A practical synthesis of (1S,2R)-1-amino-2-indanol, a key component of an HIV protease inhibitor, indinavir

A synthesis of (1S,2R)-1-amino-2-indanol (1), a key component of an HIV protease inhibitor, was accomplished through (R)-2-hydroxy-1-indanone ((R)- 3), which was prepared by an intramolecular Friedel-Crafts acylation of (R)2- acetoxy-3-phenylpropanoic acid readily available from D-(R)-phenylalanine. Alternatively, (R)-3 was obtained by an enzymatic resolution of (¡À)-2- acetoxy-1-indanone. Ketone (R)-3 was convened into 1 through an oxime formation and diastereoselective hydrogenation.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 126456-43-7

Reference£º
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis