Brief introduction of 50893-53-3

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 50893-53-3. Name: 1-Chloroethyl carbonochloridate.

Chemistry, like all the natural sciences, Name: 1-Chloroethyl carbonochloridate, begins with the direct observation of nature¡ª in this case, of matter.50893-53-3, Name is 1-Chloroethyl carbonochloridate, SMILES is O=C(Cl)OC(Cl)C, belongs to chiral-nitrogen-ligands compound. In a document, author is Hornillos, Valentin, introduce the new discover.

Dynamic Kinetic Resolution of Heterobiaryl Ketones by Zinc-Catalyzed Asymmetric Hydrosilylation

A diastereo- and highly enantioselective dynamic kinetic resolution (DKR) of configurationally labile heterobiaryl ketones is described. The DKR proceeds by zinc-catalyzed hydrosilylation of the carbonyl group, thus leading to secondary alcohols bearing axial and central chirality. The strategy relies on the labilization of the stereogenic axis that takes place thanks to a Lewis acid-base interaction between a nitrogen atom in the heterocycle and the ketone carbonyl group. The synthetic utility of the methodology is demonstrated through stereospecific transformations into either N,N-ligands or appealing axially chiral, bifunctional thiourea organocatalysts.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 50893-53-3. Name: 1-Chloroethyl carbonochloridate.

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
,Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis