Can You Really Do Chemisty Experiments About (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol

Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 126456-43-7

Electric Literature of 126456-43-7, Healthcare careers for chemists are once again largely based in laboratories, although increasingly there is opportunity to work at the point of care, helping with patient investigation. 126456-43-7, Name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol,belongs to chiral-nitrogen-ligands compounds, now introducing its new discovery.

With the aim of developing small molecular non-peptide beta-secretase (BACE) inhibitors, Leu*Ala hydroxyethylene (HE) was investigated as a scaffold to design and synthesize a series of compounds. Taking advantage of efficient combinatorial synthesis approaches and molecular modeling, extensive structure-activity relationship (SAR) studies were carried out on the N- and C-terminal residues of the Leu*Ala HE scaffold. Isobutyl amine was found to be an optimal C-cap, and suitable hydroxylalkylamines at the 3-position and nitro or methyl(methylsulfonyl)amine at the 5-position of isophthalamide as the N-terminus could form additional hydrogen bonds with BACE active sites and help improve potency. Many new potent non-peptide BACE inhibitors were identified in this study. Among them, compounds 37 and 44 exhibited excellent enzyme-inhibiting potency, comparable to that of OM99-2, and obvious inhibitory effects in cell-based assay with low molecular weights (<600). Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 126456-43-7 Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis