Downstream synthetic route of N1,N2-Dimethylethane-1,2-diamine

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

A solution of di-tert-butyl dicarbonate (4.95 g, 22.69 mmol) in CH2Cl2 (240 mL) was added dropwise to a stirred solution of N,N?-dimethylethane-1,2-diamine (4 g, 45.38 mmol) in CH2Cl2 (80 mL) over a period of 20h. The resulting mixture was stirred at r.t. for 3h. The mixture was then washed sequentially with sat. Na2CO3 (2 x 100 mL), water (50 mL), and sat. brine (50 mL). The organic solution was dried (MgSO4) and concentrated in vacuo. Purification by FCC, eluting with 0-10% CH3OH in CH2Cl2 gave the title compound (2.177 g, 51%) as a pale yellow oil; 1H NMR: 1.40 (9H, s), 2.28 (3H, s), 2.57 (2H, t), 2.79 (3H, s), 3.20 (2H, t).

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; BUTTERWORTH, Sam; FINLAY, Maurice, Raymond, Verschoyle; WARD, Richard, Andrew; KADAMBAR, Vasantha, Krishna; CHANDRASHEKAR, Reddy, C.; MURUGAN, Andiappan; REDFEARN, Heather, Marie; WO2013/14448; (2013); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Add in a 100mL single-mouth bottleN1,N2-dimethylethyl-1,2-diamine (4g, 45mmol), cooled to about 0 C in an ice bath,Then (Boc) 2O (5 g, 23 mmol) in DCM (20 mL)The temperature was raised to 25 C and the reaction was stirred for 4 h.Concentrated under reduced pressure, a saturated sodium carbonate solution was added to the residue, and extracted three times with ethyl acetate (30 mL¡Á3).The organic phase was combined, washed three times with saturated brine (20 mL¡Á3) and dried over anhydrous sodiumThe mixture was suction filtered under reduced pressure, and the filtrate was evaporated.The crude product was purified by column chromatography eluting with EtOAc EtOAcConcentration under reduced pressure gave 2.1 g of a yellow oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Beijing Purunao Bio-technology Co., Ltd.; Zhang Peilong; Shi Hepeng; Lan Wenli; Song Zhitao; (250 pag.)CN108707139; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

A solution of N,N?-dimethylethylenediamine (1.72g, 20mmol) in dry tetrahydrofuran (60mL) was treated with 2-chloromethylpyridine hydrochloride (6.604g, 40mmol) and triethylamine (8.093g, 80mmol) and the mixture was stirred under reflux for 18h. The resulting mixture was cooled to in ice and the triethylamine hydrobromide was removed by filtration. The filtrate was then treated with 10mL 15% NaOH solution and extracted with CH2Cl2 (3¡Á40mL). The combined extracts were dried over anhydrous MgSO4. Removal of the solvent with rotary evaporator yielded dark brown oil which was chromatographed on alumina and eluted with 95/5 (v/v) mixture of ethyl acetate/MeOH (Rf=0.81). The purified ligand was obtained as yellow viscous oil (yield: 4.2g, 79%). Selected IR bands (cm-1): nu(C-H) 3064 (w), 2949 (m), 2802 (m); pyridyl groups: 1592 (s), 1577 (m), 1474 (m), 1435 (s). 1H NMR: 8.43 (m, 2H), 7.70 (m, 2H), 7.37 (m, 2H), 7.72 (m, 2H), 3.58 (s, 4H), 2.51 (s, 4H), 2.14 (s, 6H); 13C NMR: 159.74 (2-py), 149.06 (6-py), 136.78 (4-py), 123.01 (3-py), 122.42 (5-py), 63.95 (N-CH2-py), 35.40 (-CH2-CH2-N), 42.94 (CH3-N), 40.60 (CH3-N).

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Mautner, Franz A.; Koikawa, Masayuki; Mikuriya, Masahiro; Harrelson, Emily V.; Massoud, Salah S.; Polyhedron; vol. 59; (2013); p. 17 – 22;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

In a 1000 ml three-necked flask equipped with a dropping funnel and a magnetic stirrer, 31.9 g (0.233 mol) of phosphorus trichloride and 500 ml of anhydrous diethyl ether were charged at room temperature in a nitrogen gas atmosphere, and the mixture was cooled to 5C or less in an ice bath. While the resulting reaction mixture was stirred, 25.0 ml (0.233 mol) of N,N’-dimethylethylenediamine were slowly added dropwise to the reaction mixture. Furthermore, 65.0 ml (0.465 mol) of triethylamine were slowly added dropwise. After the reaction mixture was further stirred for 1.5 hours, it was filtered under pressure in a nitrogen gas atmosphere. After the resulting crystals were washed with anhydrous diethyl ether three times, they were purified by vacuum-distillation (0.4 kPa, 44-52C), and 16.28 g of chloro(N,N’-dimethylethylenediamino)phosphine were obtained in the form of a transparent liquid; the yield was 46%. The resulting compound was identified with a nuclear magnetic resonance analyzer (BRUKER Ultra Shield 300 NMR Spectrometer, manufactured by BRUKER Limited.). The resulting spectral data are shown below. 1H-NMR (300 MHz, solvent: CDCl3, standard substance: tetramethylsilane) delta 3.32 (d, 4H) 2.78 (d, 6H) 31P-NMR (121 MHz, solvent: CDCl3, standard substance: triphenylphosphine) delta 171.30 (s, 1P) The structural formula is shown below.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Kanto Denka Kogyo CO., LTD.; EP1956026; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

Preparation of Methyl-(2-methylamino-ethyl)-carbamic acid tert-butyl esterTo an ice-cooled solution of N,N’-dimethyethylenediamine (10 ml_, 91.0 mmol) in dry THF (150 ml.) was added a solution of BoC2O (4.97 g, 22.8 mmol) in dry THF (50 ml.) over 30 minutes. The reaction mixture was stirred for 1 h at 00C then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat.NH4CI solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10 % MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%). LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR = 0.50 min; [M+H]+ 189.40.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ACTELION PHARMACEUTICALS LTD; AISSAOUI, Hamed; BOSS, Christoph; CORMINBOEUF, Olivier; FRANTZ, Marie-Celine; GRISOSTOMI, Corinna; WO2010/58353; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”110-70-3

The above mentioned protocol was adapted for preparation ofligand L2. In a solution of 2-(chloromethyl)-3,4-dimethoxypyridinehydrochloride (2.09 g, 9.34 mmol) in 10 mL of water, a solution ofpotassium bicarbonate(2.73 g, 19.74 mmol) in water (10 mL) wasadded dropwise. The reaction mixture was stirred at room temperaturefor next 30 min. After stirring is done, solution was extractedwith dichloromethane (3 20 mL). The combined dichloromethanelayer was treated with anhydrous sodium sulfate. Thesolution was filtered and solvent was removed by rotatory evaporation.The collected light yellow oil was dissolved in dichloromethane(10 mL). The 2-(chloromethyl)-3,4-dimethoxypyridinesolution in dichloromethane was added dropwise to a solution of N,N0-dimethylethylenediamine (0.503 mL, 4.67 mmol) in dichloromethane(15 mL). In the next step aqueous 1 M sodium hydroxide(10 mL) was slowly added and solution was stirred for additional60 h at room temperature. After 60 h of stirring followed by therapid addition of a second fraction of aqueous 1 M sodium hydroxide(10 mL, 10 mmol), the product was extracted with dichloromethane(3 25 mL). The combined organic layers were driedover anhydrous sodium sulfate and filtered. Subsequently, theexcess solvent was evaporated by vacuum to afford yellow colorviscous oil (1.86 g, Yield 89%). 1H NMR (500 MHz, Methanol-d4) d8.14 (d, 2H, pyridine ring), 7.05 (d, 2H, pyridine ring), 3.95 (s,6H,-O-CH3-Py), 3.85 (s, 6H,-O-CH3-Py), 3.66 (s, 4H,-N-CH2-Py),2.67 (s, 4H, -CH2-CH2-), 2.26 (s, 6H, -N-CH3). 13C NMR (126 MHz,Methanol-d4) d 160.77, 152.19, 147.28, 146.07 (d, J = 10.3 Hz),108.87, 61.40, 58.17, 56.43, 56.07, 43.10. ESI-MS (in CH3OH).observed m/z 391.3 [(L2 + H)+] (z = 1); theoretical-391.23[(L2 + H)+] (z = 1). IR (cm1): 3375, 2945, 1626, 1584, 1447, 1425,1261, 1228, 1173, 1073, 994, 828, 651, 603.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

2-(2-methoxyphenyl)-1,3-dimethylimidazolidine. A solution of o-anisaldehyde (9.0 g, 66 mmol) and N,N’-dimethylethylenediamine (7.9 mL, 73 mmol) in ethanol (180 mL) was stirred at r.t. for overnight. MgSO4 (30 g) was added and the mixture was stirred for 20 min. The reaction mixture was filtered and washed with ether. The solvent was removed in vacuo to afford 2-(2-methoxyphenyl)-1,3-dimethylimidazolidine as a light yellow solid, 12 g, yield 88%. 1H NMR (500 MHz, CHLOROFORM-D) delta ppm 2.21 (s, 6H) 2.57-2.72 (m, 2H) 3.34 (d, J=2.75 Hz, 2H) 3.82 (s, 3H) 4.13 (s, 1H) 6.88 (d, J=8.24 Hz, 1H) 7.00 (t, J=7.48 Hz, 1H) 7.25-7.30 (m, 1H) 7.67 (d, J=7.63 Hz, 1H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Patent; Bristol-Myers Squibb Company; US2007/270406; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The compound N,N’-dimethylethylenediamine (20 g, 0.226 mol)Soluble in 100mL of dichloromethane,50 mL of Boc anhydride (14.8 g, 0.068 mol) was added dropwise in an ice water bath.Dichloromethane mixture,Drop the room temperature reaction,The progress of the reaction was monitored by TLC (DCM: MeOH = 10:1). filter,The dry filtrate was concentrated under reduced pressure at 40 C.After the column, the product was 9g.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Patent; Sichuan Bai Li Pharmaceutical Co., Ltd.; Zhu Yi; Li Jie; Wan Weili; Zhuo Shi; Li Gangrui; (28 pag.)CN109106951; (2019); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

A single-neck RBFequipped with a magnetic stirrer was charged with methyl2-bromo-2-(4-nitrophenyl)acetate (3,7.33 g, 26.74 mmol) and EtOH (80 mL). After cooling to 0 C in an ice/waterbath. N,N?-dimethylethane-1,2-diamine (23 g, 0.26 mol) was added to the solution over 5 min. Theresulting solution was stirred at 0 C to 25 C overnight. After evaporation invacuo, the crude mixturewas purified on a silica gel column (MeOH: DCM = 10: 90) to afford compound 4 as a yellow solid (6.70 g, 100%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Young, Wendy B.; Barbosa, James; Blomgren, Peter; Bremer, Meire C.; Crawford, James J.; Dambach, Donna; Gallion, Steve; Hymowitz, Sarah G.; Kropf, Jeffrey E.; Lee, Seung H.; Liu, Lichuan; Lubach, Joseph W.; Macaluso, Jen; Maciejewski, Pat; Maurer, Brigitte; Mitchell, Scott A.; Ortwine, Daniel F.; Di Paolo, Julie; Reif, Karin; Scheerens, Heleen; Schmitt, Aaron; Sowell, C. Gregory; Wang, Xiaojing; Wong, Harvey; Xiong, Jin-Ming; Xu, Jianjun; Zhao, Zhongdong; Currie, Kevin S.; Bioorganic and Medicinal Chemistry Letters; vol. 25; 6; (2015); p. 1333 – 1337;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on N1,N2-Dimethylethane-1,2-diamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

Step. A: N-Methyl-N’-methyl-N’-t-butoxycarbonylethylenediamine A solution of 1 gram (4.58 mmole) of di-t-butyl-dicarbonate in 8 mL of CH2 Cl2 at 0 C. was treated with 0.98 mL (9.16 mmole) of N-methyl-N’-methylethylenediamine. After 20 min the cooling bath was removed and the mixture allowed to warm to 22 C. After 4 hours the mixture was concentrated in vacuo. The residue was purified by flash chromatography on 68 g silica gel eluding with 1 liter of 100:9:0.3 CH2 Cl2:MeOH: ammonia water, then 500 mL of 100:11:0.3 CH2 Cl2:MeOH: ammonia water to give 190 mg (22%) of a volatile oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Merck & Co., Inc.; US5344830; (1994); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis