Analyzing the synthesis route of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: CD-1 to CD-9 were synthesized according to the procedure reported in Ref. [18]; a representative synthesis is shown in Scheme 2. Nucleophilic substitution of mono(6-O-p- tolylsulfonyl)-beta-CD (6.4459 g, 5 mmol) with the corresponding amine (25 mmol) was performed by reaction in anhydrous dimethylformamide (DMF) at 80 C in a nitrogen atmospherefor 24.0 h, followed by cooling to room temperature. (S)-Prolinamide and (R)-prolinamide were reduced with LiAlH4 to (S)-2-aminomethylpyrrolidine and (R)-2- aminomethylpyrrolidine.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Zhu, Qingying; Shen, Haimin; Yang, Zhujin; Ji, Hongbing; Cuihua Xuebao/Chinese Journal of Catalysis; vol. 37; 8; (2016); p. 1227 – 1234;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 110-70-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3 its synthesis route is as follows.

General procedure: To a cooled to 0 C suspension consisting of N,N’-dimethyl-1,2-ethylenediamine (4.4 g, 0.05 mol), sodium bicarbonate (33.6 g, 0.40 mol), and CH2Cl2 (50 mL), a solution of 2-bromopropionyl chloride (1a) (25.7 g, 0.15 mol) in CH2Cl2 (40 mL) was added. The reaction temperature was maintained within 0-5 C and the addition time was 40 min. The mixture was stirred for 4 h at the same temperature. Water (130 mL) and CH2Cl2 (60 mL) were added and the organic layer was separated. The combined organic fractions were dried over sodium sulfate. The solvent was removed under reduced pressure. The residue was treated with hexane (30 mL) and a solid product was filtered off and recrystallized from diethyl ether to give pure compound 2a (13.25 g, 74%), m.p. 77.0-77.4 C (from diethyl ether).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Reference£º
Article; Goncharova; Yakushchenko; Raevskaya; Yakushchenko; Konovalova; Russian Chemical Bulletin; vol. 68; 1; (2019); p. 181 – 185; Izv. Akad. Nauk, Ser. Khim.; 1; (2019); p. 181 – 185,5;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about 110-70-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

A 100-mL single-neck round-bottomed flask equipped with a magnetic stirrer was purged with nitrogen, charged with N1,N2-dimethylethane-l,2-diamine (Ii) (1.61 g, 18.2 mmol), ethanol (5 mL) and Ih (500 mg, 1.82 mmol), and the reaction was stirred at room temperature for 1 h. After this time, the reaction mixture was evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography to afford an 89% yield (404 mg) of Ij as a yellow oil: 1H NMR (500 MHz, DMSO-J6) 5 8.18 (d, 2H, J= 8.5 Hz), 7.60 (d, 2H, J= 8.5 Hz), 3.87 (s, IH), 3.61 (td, IH, J = 12.0, 4.0 Hz), 3.26 (ddd, IH, J = 12.0, 4.0, 2.5 Hz), 3.02 (ddd, IH, J= 12.0, 4.0, 2.5 Hz), 2.84 (s, 3H), 2.64 (td, IH, J= 12.0, 4.0 Hz), 2.06 (s, 3H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Reference£º
Patent; CGI PHARMACEUTICALS, INC.; GENENTECH, INC.; WO2009/137596; (2009); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of N1,N2-Dimethylethane-1,2-diamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

N1,N2-Dimethylethane-1,2-diamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”110-70-3

A mixture of 2-(3-bromo-phenyl)-3,3-dimethyl-1,2,3,4-tetrahydro-quinoline-6-carboxylic acid (600 mg, 1.7 mmol), N,N’-dimethyl-ethane-1,2-diamine (0.37 mL, 3.4 mmol), copper(I) iodide (96 mg, 0.5 mmol), N,N-dimethylglycine hydrochloride (140 mg, 1.0 mmol) and potassium carbonate (923 mg, 6.7 mmol) in dimethyl sulfoxide (5 mL) was stirred at 120 C. for 16 h. Then the reaction mixture cooled to room temperature. The reaction mixture was extracted with ethyl acetate (2¡Á150 mL), washed with water (2¡Á50 mL) and saturated aqueous ammonium chloride solution (2¡Á50 mL), dried over anhydrous sodium sulfate and then concentrated in vacuo. Purification by Waters automated flash system (column: Xterra 30 mm¡Á100 mm, sample manager 2767, pump 2525, detector: ZQ mass and UV 2487, solvent system: acetonitrile and 0.1% ammonium hydroxide in water) afforded 3,3-dimethyl-2-{3-[methyl-(2-methylamino-ethyl)-amino]-phenyl}-1,2,3,4-tetrahydro-quinoline-6-carboxylic acid (500 mg, 80%) as a white solid: LC/MS m/e calcd for C22H29N3O2 (M+H)+: 368.50, observed: 368.1.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Chen, Li; Feng, Lichun; Huang, Mengwei; Liu, Yongfu; Wu, Guolong; Wu, Jim Zhen; Zhou, Mingwei; US2011/257151; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.110-70-3, N1,N2-Dimethylethane-1,2-diamine it is a common compound, a new synthetic route is introduced below.

a 1,3-Dimethyl-2-(2-thienyl)-imidazolidine 23.5 g (267 mmol) of N,N’-dimethylethylenediamine were dissolved in 300 ml of toluene and treated with 29.8 g (266 mmol) of thiophene-2-carbaldehyde. The clear mixture was refluxed for 4 hours using a Dean-Stark trap. After that time 4.9 ml of water had separated in the trap. After cooling, the solution was filtered and evaporated. The oily residue was destined in vacuo. Yield: 45 g. Boiling point: 65 C. (0.1 mm Hg).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Aventis Pharma Deutschland GmbH; Genentech, Inc.; US6566366; (2003); B1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.110-70-3, N1,N2-Dimethylethane-1,2-diamine it is a common compound, a new synthetic route is introduced below.

2, phosphorus trichloride (27.5g, 0.2mol) and triethylamine (40.5g, 0.4mol) was dissolved in 200mL n-hexane, the solution was placed in an ice water bath cooled to 0-5 C;N,N-dimethylethylenediamine (17.6 g, 0.2 mol) was slowly added dropwise to the solution under stirring.Hexane solution; after the addition is complete, the ice water bath is removed, and the temperature is naturally raised to room temperature, continue to react 4h; reaction is over, filter, collect the filtrate, after testing,Which contains the product of formula (III) wherein both R groups in formula (III) are methyl;

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Wanhua Chemical Group Co., Ltd.; Lv Yingdong; Zhu Longlong; Liu Junxian; Song Mingyan; Xue Yongyong; Li Jinming; Zhang Tao; Li Yuan; (10 pag.)CN107915758; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The mixture of N, N’-Dimethylene diamine 21-1 (5 mL, 46.5 mmol) and tert-butyl acrylate 13 mL (116 mmol) was heated at 85 C for 1 hour. Another 13 mL (116 mmol) of tert- butyl acrylate was added. The reaction mixture was continuely heated at 85C for 1 hour and stirred at room temperature overnight. The reaction mixture was concentrated in vacuo. The residue wasdiluted with hexanes and purified by flash column chromatography using SiliaSep Cartridges (120g), eluting with 0-5% methanol/DCM to give 10.1 g (62%) of compound 21-2. MS (ESI) m/z 345 [M+H].

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; AMBRX, INC.; MIAO, Zhenwei; ATKINSON, Kyle, C.; BIROC, Sandra; BUSS, Timothy; COOK, Melissa; KRAYNOV, Vadim; MARSDEN, Robin; PINKSTAFF, Jason; SKIDMORE, Lillian; SUN, Ying; SZYDLIK, Angieszka; VALENTA, Ianina; WO2012/166560; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about N1,N2-Dimethylethane-1,2-diamine

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To a stirred solution of Lambda/,Lambda/’-dimethylethylene diamine (3.66 mL, 34 mmol) in dichloromethane (40 mL) at 0C was added dropwise a solution of di-tert-butyl dicarbonate (2.4 g, 11 mmol) in dichloromethane (20 mL) and allowed to warm to room temperature overnight, concentrated under reduced pressure, diluted with EtOAc (100 mL), washed with water (2 * 100 mL), brine (100 mL), dried and concentrated under reduced pressure to give the title product 91 as a colourless oil (1.54 g, 74% yield). 1H NMR (400 MHz, CDCI3) delta 3.26 (t, J = 6.15 Hz, 2H), 2.81 (s, 3H), 2.66 (t, J = 6.57 Hz, 2H), 2.38 (s, 3H), 9.28 (s, 9H) ppm.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Reference£º
Patent; ANTIKOR BIOPHARMA LIMITED; DEONARAIN, Mahendra Persaud; YAHIOGLU, Gokhan; STAMATI, Ioanna; SAOUROS, Savvas; KAPADNIS, Prashant Bhimrao; (423 pag.)WO2016/46574; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of N1,N2-Dimethylethane-1,2-diamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

N1,N2-Dimethylethane-1,2-diamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”110-70-3

o-Anisaldehyde (10.0 g, 73.4 mmol, 1.0 equiv) was dissolved in EtOH (150 mL) at 25 CC, MAT-dimemylethylenediamine (8.70 mL, 80.8 mmol, 1.1 equiv) was added, and the reaction contents were stirred at 25 C for 24 h before being filtered through a pad of MgS04 and concentrated to afford the desired imidazolidine (15.0 g, 99% yield) as a white solid. Without any additional purification, this material (15.0 g, 72.8 mmol, 1.0 equiv) was dissolved in Et20 (250 mL) and cooled to -40 C. f-BuLi (1.7 M in pentane. 100 mL 170 mmol, 2.34 equiv) was then added dropwise over 1 h at -40 C. Upon completion, the resultant orange reaction contents were warmed slowly to -20 C. stirred for an additional 7 h, and then transferred by cannula over 5 min into a flask containing (CBrCl2)2 (55.3 g, 170 mmol, 2.34 equiv) in Et20 (250 mL) at 0 C. The reaction contents were then stirred for 12 h, during which time they were warmed to 25 C; upon completion, the solution was recooled to 0 C and 1 M HCI (500 mL) was added slowly. The resultant solution was stirred for 1 h at 0 C, quickly warmed to 25 C, and then quenched by the addition of water (500 mL). The reaction contents were then extracted with EtOAc (3 x 250 mL), and the combined organic extracts were washed with water (500 mL) and brine (250 mL). dried (MgSO-i), and 73 concentrated.’23’ The resultant crude yellow solid was purified by flash column chromatography (silica gel, hexanes EtOAc, 9/1) to give the desired brominated product 28 (8.12 g, 52% yield) as a white solid. This material (8.12 g, 37.8 mmol, 1.0 equiv) was suspended in MeOH (100 mL) at 25 C and cooled to 0 C. NaBHj (2.88g , 75.6 mmol, 2.0 equiv) was added portionwise and the reaction contents were stirred for 1 h at 0 C. Upon completion, the reaction contents were quenched with water (100 mL) and concentrated. The reaction contents were redissolved in EtOAc ( 100 mL), poured into water (100 mL), and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with water ( 150 mL) and brine (50 mL), dried (MgSO- , and concentrated to afford the desired alcohol (7.83 g, 96%) as a white solid. Pressing forward without any additional purification, this newly prepared material (7.83 g, 36.1 mmol, 1.0 equiv) was dissolved in EtjO (180 mL) and pyridine (0.437 mL, 5.41 mmol, 0.15 equiv) and PBr^ (3.41 mL, 36.1 mmol, 1.0 equiv) were added sequentially at 25 C. The reaction contents were then stirred for 4 h at 25 C. Upon completion, the reaction contents were quenched by the addition of water (100 mL), poured into water ( 100 ml), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (200 mL) and brine (100 mL), dried (MgS04), and concentrated to give the desired bromide (10.0 g, 99%) as a white solid. [Note: This product quickly decomposes on standing once it is neat and should be carried forward immediately. | Finally, KHMDS (0.5 M in toluene, 129 mL, 64.5 mmol, 1.8 equiv) was added to a solution of diethyl phosphite (9.19 mL, 71.4 mmol, 2.0 equiv) in THF (100 mL) at 0 C and stirred for 15 min. To this solution was added dropwise a solution of the freshly prepared bromide (10.0 g, 35.7 mmol, 1.0 equiv) dissolved in THF (100 mL), and the reaction contents were stirred for 12 h with slow warming to 25 C. Upon completion, the reaction contents were quenched with saturated NH4CI (150 mL), poured into water (150 mL), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (100 mL) and brine (100 mL), dried (MgS04), and concentrated to give the phosphonate 31 (10.79 g, 90%) as a colorless oil. 31: R/ = 0.21 (silica gel, EtOAc); IR (film) vmax 2981, 1589, 1572, 1466, 1435, 1267, 1082, 965, 864, 771 ; NMR (400 MHz, CDCI3) delta 7.18 (d, / = 8.0 Hz, 1 H), 7.07 (app dt, J = 8.0, 2.4 Hz, 1 H), 6.81 (d, J = 8.4 Hz, 1 H), 4.05 (dq, J = 7.2, 7.2 Hz, 4 H), 3.85 (s, 3 H), 3.50 (d, J = 22.0 Hz, 2 H), 1.26 (t, J = 7.2 Hz, 6 H); l3C NMR (75 MHz, CDCI3) delta 158.4 (d, J = 5.4 Hz). 128.6 (d, J = 3.8 Hz), 125.8 (d, J = 7.5 Hz), 125.0 (d, J = 3.5 Hz), 121.6 (d, J = 10.6 Hz), 109.4 (d, J = 3.4 Hz), 61.9 (d, J = 6.5 Hz), 55.9, 28.3 (d, J = 139.0 Hz), 16.3 (d, J = 6.4 Hz); HRMS (MALDI-FTMS) calcd for Ci2H|9BrP04+ [M + H*] 337.0204, found 337.0189

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK; SNYDER, Scott Alan; SHERWOOD, Trevor C.; ROSS, Audrey G.; OH, Hyunju; GHOSH, Sankar; WO2011/103442; (2011); A2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of 6-Bromo-1,2,3,4-tetrahydroquinoline

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

N1,N2-Dimethylethane-1,2-diamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”110-70-3

beta-CD-OTs (500.0 mg, 0.388 mmol) was dissolved in 5 mL dry DMF with 100 mg NaI. N,N?-Dimethylethane-1,2-diamine (1.28 mL, 11.72 mmol) was then added under N2 and the reaction mixture was stirred overnight at 70 C. under N2. The next day the reaction mixture was cooled and precipitated in 50 mL acetone, giving a white precipitate. Unreacted tosylate was removed via the same ion-exchange methods as described above for beta-CD-NH2. Yield=374 mg (80.0%). 1H NMR (300 MHz, D2O, delta): 5.02-4.87 (s, 7H, C1H of CD), 3.93-3.64 (m, 29H, C2H, C3H, C4H, and C5H of CD and NH), 3.61-3.29 (m, 14H, C6H of CD), 3.01-2.36 (m, 10H, N1-CH2, N2-CH2, and N2-(CH3)2).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Thompson, David H.; Kulkarni, Aditya; Deng, Wei; US2015/202323; (2015); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis