Application In Synthesis of 2-Aminoquinazolin-4(3H)-one. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 2-Aminoquinazolin-4(3H)-one, is researched, Molecular C8H7N3O, CAS is 20198-19-0, about Identification of the main nitrogen-containing compounds in Ctenopharyngodon idellus by HPLC-Q-TOF-MS. Author is Zhang, You-sheng; Huang, Jia-si; Liu, Xue-ming; Cheng, Jing-rong; Chen, Zhi-yi; Zhang, Ye-hui.
The main nitrogenous compounds in methanol extracts of Ctenopharyngodon idellus were analyzed and identified using high-performance liquid chromatog. coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Both pos. and neg. ionization modes were used to confirm the related chem. compounds and their characteristic fragment ions according to the accurate mol. mass information of the excimer ion peaks and the fragment ions. Using the ChemSpider database, 33 nitrogenous compounds in Ctenopharyngodon idellus were ultimately determined, and the data for the main fragments of each component were analyzed. These 33 nitrogenous compounds included 11 amino acids (eight types of α-amino acids), 12 amines, eight amide compounds, and two heterocyclic nitrogenous compounds The results showed that the structures of monomer compounds in fresh aquatic products and raw materials could be elucidated directly using the HPLC-Q-TOF-MS technique and fragmentation anal. by mass spectrometry, which can improve the efficiency of anal. and identification of chem. components in fresh raw material. This study shows that these techniques are conducive for the identification and anal. of active components and newly generated compounds during the storage of fresh raw materials.
After consulting a lot of data, we found that this compound(20198-19-0)Application In Synthesis of 2-Aminoquinazolin-4(3H)-one can be used in many types of reactions. And in most cases, this compound has more advantages.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis