The important role of 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.33527-91-2, Tris[2-(dimethylamino)ethyl]amine it is a common compound, a new synthetic route is introduced below.

To a mixture of Cu(NO3)22.5H2O (0.504 g, 2.17 mmol) in MeOH(15.0 mL), was added tris[2-(dimethylamino)ethyl]amine (L4)(0.500 g, 2.17 mmol) and stirred at RT. The blue solution was evaporatedunder reduced pressure to afford a yellow solid. The solidwas dissolved again in MeOH and diffused with diethyl ether. Suitableblue block-shaped crystals were obtained in 2 days. Yield(0.921 g, 98%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Article; Sivanesan, Dharmalingam; Seo, Bongkuk; Lim, Choong-Sun; Kim, Hyeon-Gook; Journal of Catalysis; vol. 382; (2020); p. 121 – 128;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.326 g, 1.41 mmol) in acetonitrile (4 mL) was added 1-bromooctadecane (1.41g, 4.23 mmol). The resulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetonemixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-18,18,18 (1.48 g, 85%) as a white powder; mp=227-259 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.13-4.02 (m, 6H), 3.65-3.58 (m, 6H), 3.46-3.38 (m, 6H), 3.35 (s, 18H), 1.78-1.66 (m, 6H), 1.41-1.37 (m, 90H), 0.89-0.82 (m, 9H); high resolutionmass spectrum (ESI) in/z 330.0376 ([Mj3 calculated for [C66H,4,N4j3: 330.0380). ?H spectmm of compound T-18,18,18 can be found in Figure 55.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.426 g, 1.85mmol) in acetonitrile (4 mL) was added 1-bromodecane (1.27 g, 5.73 mmol). Theresulting mixture was heated at reflux with stirring for 18 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with a Buchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T10 10,10,10 (1.16 g, 70%) as a white powder; mp=223-248 C; ?H NMR (300 MHz,CDC13) oe 4.11-4.02 (m, 6H), 3.62-3.53 (m, 6H), 3.41-3.27 (m, 24H), 1.72-1.62 (m, 6H), 1.38-1.14 (m, 42H), 0.85-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.4,61.1, 50.2, 46.9, 31.6, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3, 13.0; high resolution mass spectrum (ESI) m/z 217.9095 ([Mj3 calculated for [C42H93N4j3: 217.9128). See alsoYoshimura et al., 2012, Langmuir 28:9322-9331. ?H and ?3C NMR spectra of compound T-10,10,10 can be found in Figure 50.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

The chemical industry reduces the impact on the environment during synthesis,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,I believe this compound will play a more active role in future production and life.

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The chemical industry reduces the impact on the environment during synthesis,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.

General procedure: LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of Tris[2-(dimethylamino)ethyl]amine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 33527-91-2

The chemical industry reduces the impact on the environment during synthesis,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,I believe this compound will play a more active role in future production and life.

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The chemical industry reduces the impact on the environment during synthesis,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To a solution of tris[2-(dimethylamino)ethyl]amine (L4)(0.500 g, 2.17 mmol) in MeOH was added Ni(NO3)26H2O(0.0.631 g, 2.17 mmol), followed by stirring at RT for 12 h. A greenprecipitate was obtained after evaporating the reaction solutionand dried. Yield (0.919 g, 98%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Article; Sivanesan, Dharmalingam; Seo, Bongkuk; Lim, Choong-Sun; Kim, Hyeon-Gook; Journal of Catalysis; vol. 382; (2020); p. 121 – 128;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis