You could be based in a university, Synthetic Route of 108-47-4, combining chemical research with teaching; in a pharmaceutical company, working on developing and trialing new drugs; or in a public-sector research center, helping to ensure national healthcare provision keeps pace with new discoveries. 108-47-4, name is 2,4-Dimethylpyridine. In an article,Which mentioned a new discovery about 108-47-4
Poly(isobutylene-b-styrene) (PIB-PS) copolymers and polyisobutylene (PIB) homopolymers were synthesized via quasiliving carbocationic polymerization from the initiator 3,3,5-trimethyl-5-chlorohexyl acetate, which contains a protected hydroxyl group. The PIB block was created at -70 C in a methylcyclohexane/methyl chloride (60:40) cosolvent system, using TiCl4 as co-initiator, followed optionally by sequential addition of styrene. Using a strong base, the acetate head group of the resulting block copolymer was cleaved to yield a hydroxyl group, which was subsequently esterified with the branching agent 2,2-bis((2-bromo-2-methyl)propionatomethyl)propionyl chloride (BPPC) to create dual initiating sites for atom transfer radical polymerization (ATRP). ATRP of tert-butyl acrylate was carried out using a Cu(I)Br/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) catalyst system. In some cases, the ester side chains of the poly(tert-butyl acrylate) (PtBA) blocks were cleaved to create poly(acrylic acid) (PAA) blocks. The final miktoarm star polymers had compositions that were very close to theoretical.
Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 108-47-4
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis