Extended knowledge of C9H11NO

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 126456-43-7

126456-43-7, Chemistry, like all the natural sciences, begins with the direct observation of nature— in this case, of matter.126456-43-7, Name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, molecular formula is C9H11NO. Belongs to chiral-nitrogen-ligands compound. In a article,once mentioned of 126456-43-7

Enantiomeric separation of pharmaceutically important drug intermediates using a Metagenomic lipase and optimization of its large scale production

In the present study, efficient enzymatic methods were developed using a recombinant metagenomic lipase (LipR1) for the synthesis of corresponding esters by the transesterification of five different pharmaceutically important secondary alcohols. The recombinant lipase (specific activity = 87m6 U/mg) showed maximum conversion in presence of ionic liquid with Naphthyl-ethanol (eeP = 99%), Indanol and Methyl-4 pyridine methanol (eeS of 98% and 99%) respectively in 1 h. Vinyl acetate was found as suitable acyl donor in transesterification reactions. It was interesting to observe that maximum eeP of 85% was observed in just 15 min with 1-indanol. As this enzyme demonstrated pharmaceutical applications, attempts were made to scale up the enzyme production on a pilot scale in a 5 litre bioreactor. Different physical parameters affecting enzyme production and biomass concentration such as agitation rate, aeration rate and inoculum concentration were evaluated. Maximum lipase activity of 8463 U/ml was obtained at 7 h of cultivation at 1 lpm, 300 rpm and 1.5% inoculum.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 126456-43-7

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis