Extracurricular laboratory: Synthetic route of 111-24-0

There is still a lot of research devoted to this compound(SMILES:BrCCCCCBr)SDS of cas: 111-24-0, and with the development of science, more effects of this compound(111-24-0) can be discovered.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Functionalizing Polystyrene with N-Alicyclic Piperidine-Based Cations via Friedel-Crafts Alkylation for Highly Alkali-Stable Anion-Exchange Membranes, published in 2020-06-23, which mentions a compound: 111-24-0, Name is 1,5-Dibromopentane, Molecular C5H10Br2, SDS of cas: 111-24-0.

Different anion-exchange membranes (AEMs) based on polystyrene (PS)-carrying benzyltrimethyl ammonium cations are currently being developed for use in alk. fuel cells and water electrolyzers. However, the stability in relation to these state-of-the-art cations needs to be further improved. Here, we introduce highly alkali-stable mono- and spirocyclic piperidine-based cations onto PS by first performing a superacid-mediated Friedel-Crafts alkylation using 2-(piperidine-4-yl)propane-2-ol. This is followed by quaternization of the piperidine rings either using iodomethane to produce N,N-di-Me piperidinium cations or by cyclo-quaternizations using 1,5-dibromopentane and 1,4-dibromobutane, resp., to obtain N-spirocyclic quaternary ammonium cations. Thus, it is possible to functionalize up to 27% of the styrene units with piperidine rings and subsequently achieve complete quaternization. The synthetic approach ensures that all of the sensitive β-hydrogens of the cations are present in ring structures to provide high stability. AEMs based on these polymers show high alk. stability and less than 5% ionic loss was observed by 1H NMR spectroscopy after 30 days in 2 M aqueous NaOH at 90°C. AEMs functionalized with N,N-di-Me piperidinium cations show higher stability than the ones carrying N-spirocyclic quaternary ammonium. Careful anal. of the latter revealed that the rings formed in the cyclo-quaternization are more prone to degrade via Hofmann elimination than the rings introduced in the Friedel-Crafts reaction. AEMs with an ion-exchange capacity of 1.5 mequiv g-1 reach a hydroxide conductivity of 106 mS cm-1 at 80°C under fully hydrated conditions. The AEMs are further tuned and improved by blending with polybenzimidazole (PBI). For example, an AEM containing 2 weight % PBI shows reduced water uptake and much improved robustness during handling and reaches 71 mS cm-1 at 80°C. The study demonstrates that the critical alk. stability of PS-containing AEMs can be significantly enhanced by replacing the benchmark benzyltrimethyl ammonium cations with N-alicyclic piperidine-based cations.

There is still a lot of research devoted to this compound(SMILES:BrCCCCCBr)SDS of cas: 111-24-0, and with the development of science, more effects of this compound(111-24-0) can be discovered.

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis