Synthetic Route of 108-47-4, Chemistry is the experimental and theoretical study of materials on their properties at both the macroscopic and microscopic levels.108-47-4, Name is 2,4-Dimethylpyridine, molecular formula is C7H9N. In a article,once mentioned of 108-47-4
Tuning of the properties of transition-metal bispidine complexes by variation of the basicity of the aromatic donor groups
Bispidines (3,7-diazabicyclo[3.3.1]nonanes) as very rigid and highly preorganized ligands find broad application in the field of coordination chemistry, and the redox potentials of their transition-metal complexes are of importance in oxidation reactions by high-valent iron complexes, aziridination catalyzed by copper complexes, and imaging by 64Cu positron emission tomography tracers. Here, we show that the redox potentials and stability constants of the copper(II) complexes of 15 tetradentate bispidines can be varied by substitution of the pyridine rings (variation of the redox potential over ca. 450 mV and of the complex stability over approximately 10 log units). It is also shown that these variations are predictable by the pKa values of the pyridine groups as well as by the Hammett parameters of the substituents, and the density functional theory based energy decomposition analysis also allows one to accurately predict the redox potentials and concomitant complex stability. It is shown that the main contribution emerges from the electrostatic interaction energy, and the partial charges of the pyridine donor groups therefore also correlate with the redox potentials.
Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 108-47-4
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis