Synthetic Route of 108-47-4, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.108-47-4, Name is 2,4-Dimethylpyridine, molecular formula is C7H9N. In a article£¬once mentioned of 108-47-4
Asymmetric distyrylpyridinium dyes as red-emitting fluorescent probes for quadruplex DNA
The interactions of three cationic distyryl dyes, namely 2,4-bis(4-dimethylaminostyryl)-1-methylpyridinium (1 a), its derivative with a quaternary aminoalkyl chain (1 b), and the symmetric 2,6-bis(4- dimethylaminostyryl)-1-methylpyridinium (2 a), with several quadruplex and duplex nucleic acids were studied with the aim to establish the influence of the geometry of the dyes on their DNA-binding and DNA-probing properties. The results from spectrofluorimetric titrations and thermal denaturation experiments provide evidence that asymmetric (2,4-disubstituted) dyes 1 a and 1 b bind to quadruplex DNA structures with a near-micromolar affinity and a fair selectivity with respect to double-stranded (ds) DNA [Ka(G4)/K a(ds)=2.5-8.4]. At the same time, the fluorescence of both dyes is selectively increased in the presence of quadruplex DNAs (more than 80-100-fold in the case of human telomeric quadruplex), even in the presence of an excess of competing double-stranded DNA. This optical selectivity allows these dyes to be used as quadruplex-DNA-selective probes in solution and stains in polyacrylamide gels. In contrast, the symmetric analogue 2 a displays a strong binding preference for double-stranded DNA [Ka(ds)/K a(G4)=40-100), presumably due to binding in the minor groove. In addition, 2 a is not able to discriminate between quadruplex and duplex DNA, as its fluorescence is increased equally well (20-50-fold) in the presence of both structures. This study emphasizes and rationalizes the strong impact of subtle structural variations on both DNA-recognition properties and fluorimetric response of organic dyes. Copyright
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 108-47-4
Reference£º
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis