Fun Route: New Discovery of N1,N2-Dimethylethane-1,2-diamine

Thank you very much for taking the time to read this article. If you are also interested in other aspects of N1,N2-Dimethylethane-1,2-diamine, CAS: 110-70-3, you can also browse my other articles.

110-70-3, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.110-70-3, name is N1,N2-Dimethylethane-1,2-diamine, below Introduce a new synthetic route.

A solution of N,N?-dimethylethylenediamine (1.72g, 20mmol) in dry tetrahydrofuran (60mL) was treated with 2-chloromethylpyridine hydrochloride (6.604g, 40mmol) and triethylamine (8.093g, 80mmol) and the mixture was stirred under reflux for 18h. The resulting mixture was cooled to in ice and the triethylamine hydrobromide was removed by filtration. The filtrate was then treated with 10mL 15% NaOH solution and extracted with CH2Cl2 (3¡Á40mL). The combined extracts were dried over anhydrous MgSO4. Removal of the solvent with rotary evaporator yielded dark brown oil which was chromatographed on alumina and eluted with 95/5 (v/v) mixture of ethyl acetate/MeOH (Rf=0.81). The purified ligand was obtained as yellow viscous oil (yield: 4.2g, 79%). Selected IR bands (cm-1): nu(C-H) 3064 (w), 2949 (m), 2802 (m); pyridyl groups: 1592 (s), 1577 (m), 1474 (m), 1435 (s). 1H NMR: 8.43 (m, 2H), 7.70 (m, 2H), 7.37 (m, 2H), 7.72 (m, 2H), 3.58 (s, 4H), 2.51 (s, 4H), 2.14 (s, 6H); 13C NMR: 159.74 (2-py), 149.06 (6-py), 136.78 (4-py), 123.01 (3-py), 122.42 (5-py), 63.95 (N-CH2-py), 35.40 (-CH2-CH2-N), 42.94 (CH3-N), 40.60 (CH3-N).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of N1,N2-Dimethylethane-1,2-diamine, CAS: 110-70-3, you can also browse my other articles.

Reference£º
Article; Mautner, Franz A.; Koikawa, Masayuki; Mikuriya, Masahiro; Harrelson, Emily V.; Massoud, Salah S.; Polyhedron; vol. 59; (2013); p. 17 – 22;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis