Interesting scientific research on 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione

The design and synthesis of related molecules that are more effective, more selective, and less toxic than aspirin are important objectives of biomedical research.Recommanded Product: 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 119139-23-0, in my other articles.

Recommanded Product: 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, Chemical engineers work across a number of sectors, processes differ within each of these areas, and are directly involved in the design, development, creation and manufacturing process of chemical products and materials. 119139-23-0, Name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, molecular formula is C20H13N3O2. In a Patent,once mentioned of 119139-23-0

The present invention relates to antithrombotic compounds comprising the group Q, Q having formula (I), wherein the substructure (i) is a structure selected from (a, b and c), wherein X is O or S; X? being independently CH or N; and m is 0, 1, 2 or 3; wherein the group Q is bound through an oxygen atom or an optionally substituted nitrogen or carbon atom, or a pharmaceutically acceptable salt thereof or a prodrug thereof. The compounds of the invention are therapeutically active and in particular are antithrombotic agents.

The design and synthesis of related molecules that are more effective, more selective, and less toxic than aspirin are important objectives of biomedical research.Recommanded Product: 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 119139-23-0, in my other articles.

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis