Electric Literature of 135861-56-2, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 135861-56-2, Name is (1R)-1-((4R,4aR,8aS)-2,6-Bis(3,4-dimethylphenyl)tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)ethane-1,2-diol, SMILES is O[C@@H]([C@@H]1[C@@](OC(C2=CC=C(C)C(C)=C2)OC3)([H])[C@@]3([H])OC(C4=CC=C(C)C(C)=C4)O1)CO, belongs to chiral-nitrogen-ligands compound. In a article, author is Asokan, Kathiravan, introduce new discover of the category.
Impact of CO2-solvent separators on the degradation of benzyl-2,3-dihydroxypiperidine-1-carboxylate during preparative supercritical fluid chromatographic (SFC) purification
During a preparative separation of the cis enantiomeric pair of benzyl-2,3-dihydroxypiperidine-1-carboxylate using supercritical-fluid chromatography (SFC) with methanol modifier, significant degradation of the products in the collected fractions was observed when a Waters SFC-350 (R) (Milford, MA, USA) was used, but same was not observed when a Waters SFC-80q (R) (Milford, MA, USA) was used. Through a systematic investigation, we discovered that the compound degraded over time under an acidic condition created by the formation of methyl carbonic acid from methanol and CO2. The extent of the product degradation was dependent on the time and the concentration of CO2 remained in the product fraction, which was governed by the efficiency of CO2-methanol separation during the fraction collection. Hence, we demonstrated that the different designs of CO2-solvent separator (high pressurized cyclone in Waters SFC-350 (R) and low-pressurized vortexing separator in Waters SFC-80q (R)(R)) had a significant impact on the degradation of an acid-sensitive compound. The acidity caused by CO2 in methanol was supported by diminished degradation after a nitrogen purging or after neutralizing the collected fractions with a base. Three different solutions to overcome the degradation problem of the acid sensitive compounds using SFC-350 (R) with the high pressurized separator were investigated and demonstrated. The degraded products were isolated as four enantiomers and their relative stereochemistry were established based on 2D NMR data along with the plausible mechanism of degradation. (C) 2017 Elsevier B.V. All rights reserved.
Electric Literature of 135861-56-2, Consequently, the presence of a catalyst will permit a system to reach equilibrium more quickly, but it has no effect on the position of the equilibrium as reflected in the value of its equilibrium constant.I hope my blog about 135861-56-2 is helpful to your research.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
,Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis