Chemical research careers are more diverse than they might first appear, as there are many different reasons to conduct research and many possible environments. 126456-43-7, Name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, belongs to chiral-nitrogen-ligands compound, is a common compound. 126456-43-7Catalysts allow a reaction to proceed via a pathway that has a lower activation energy than the uncatalyzed reaction. In an article, authors is Zijlstra, Hester, once mentioned the new application about 126456-43-7.
The stereodivergent ring-opening of 2-phenyl oxazaphospholidines with alkyl lithium reagents is reported. N-H oxazaphospholidines derived from both (+)-cis-1-amino-2-indanol and (-)-norephedrine provide inversion products in a highly stereoselective process. In contrast, N-Me oxazaphospholidines yield ring-opening products with retention of configuration at the P center, as previously reported by Juge and co-workers. As a result, from a single amino alcohol auxiliary, both enantiomers of key P-stereogenic intermediates could be synthesized. Theoretical studies of ring-opening with model oxazaphospholidines at the DFT level have elucidated the streochemical course of this process. N-H substrates react in a single step via preferential backside SN2@P substitution with inversion at phosphorus. N-methylated substrates react preferentially via a two-step frontside SN2@P, yielding a ring-opened product in which the nucleophilic methyl binds to P with retention of configuration. DFT calculations have shown that the BH3 unit is a potent directing group to which the methyl lithium reagent coordinates via Li in all the reactions studied.
The design and synthesis of related molecules that are more effective, more selective, and less toxic than aspirin are important objectives of biomedical research.126456-43-7, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 126456-43-7, in my other articles.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis