New explortion of 126456-43-7

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. Recommanded Product: 126456-43-7, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 126456-43-7, in my other articles.

As an important bridge between the micro and macro material world, chemistry is one of the main methods and means for humans to understand and transform the material world. Recommanded Product: 126456-43-7, Name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, belongs to chiral-nitrogen-ligands compound, is a common compound. Recommanded Product: 126456-43-7Catalysts allow a reaction to proceed via a pathway that has a lower activation energy than the uncatalyzed reaction. In an article, authors is Espadinha, Margarida, once mentioned the new application about Recommanded Product: 126456-43-7.

N-Methyl-D-aspartate receptors (NMDARs) are crucial for the normal function of the central nervous system (CNS), and fundamental in memory and learning-related processes. The overactivation of these receptors is associated with numerous neurodegenerative and psychiatric disorders. Therefore, NMDAR is considered a relevant therapeutic target for many CNS disorders. Herein, we report the synthesis and pharmacological evaluation of a new scaffold with antagonistic activity for NMDAR. Specifically, a chemical library of eighteen 1-aminoindan-2-ol tetracyclic lactams was synthesized and screened as NMDAR antagonists. The compounds were obtained by chiral pool synthesis using enantiomerically pure 1-aminoindan-2-ols as chiral inductors, and their stereochemistry was proven by X-ray crystallographic analysis of two target compounds. Most compounds reveal NMDAR antagonism, and eleven compounds display IC50 values in a Ca2+ entry-sensitive fluo-4 assay in the same order of magnitude of memantine, a clinically approved NMDAR antagonist. Docking studies suggest that the novel compounds can act as NMDAR channel blockers since there is a compatible conformation with MK-801 co-crystallized with NMDAR channel. In addition, we show that the tetracyclic 1-aminoindan-2-ol derivatives are brain permeable and non-toxic, and we identify promising hits for further optimization as modulators of the NMDAR function.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. Recommanded Product: 126456-43-7, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 126456-43-7, in my other articles.

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis