With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.
Synthesis of [N,N?-Dimethyl-N,N?-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane] was taken from a previously reported procedure [16]. 2-(chloromethyl)pyridine hydrochloride (1.501 g, 9.15 mmol) dissolved in 5 mL deionized (DI) water was added dropwise to an aqueous solution containing K2CO3 (2.556 g, 18.49 mmol) dissolved in 7.5 mL DI water. The resulting mixture was stirred for 30 min. The mixture was extracted with CH2Cl2 (3¡Á10 mL). The organic phase was collected and dried with anhydrous Na2SO4. The dried solution was concentrated in vacuo to afford orange oil. A solution containing N,N?-dimethylethylenediamine (0.471 mL, 4.38 mmol) in 15 mL CH2Cl2 was added dropwise to the aforementioned orange oil dissolved in 5 mL CH2Cl2. An aqueous solution containing NaOH (0.311 g, 7.78 mmol) dissolved in 7.6 mL DI water was slowly added to organic mixture and stirred at room temperature. After 60 h, a second portion of NaOH solution(0.318 g, 7.95 mmol) was quickly added to the mixture. The combined mixture was extracted with CH2Cl2 (3¡Á20 mL) and dried with anhydrous Na2SO4. The organic solution was concentrated in vacuo to afford a brown oil, BPMEN (Yield: 0.631 g, 2.33 mmol, 70%) 1H NMR(500 MHz, CD2Cl2) delta 8.46 (dt, 2H, pyridine ring), 7.80 (m, 2H, pyridinering), 7.51 (m, 2H, pyridine ring), 7.30 (m, 2H, pyridine ring), 3.70 (m,4H, -CH2), 2.66 (m, 4H, -CH2), 2.27 (s, 6H, -CH3). ESI-MS (MeOH).Observed m/z 271.25 [BPMEN+H+] (z=1); simulated m/z 271.19.
The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.
Reference£º
Article; Pella, Bruce J.; Niklas, Jens; Poluektov, Oleg G.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 483; (2018); p. 71 – 78;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis