Reference of Tri(naphthalen-1-yl)phosphine. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Tri(naphthalen-1-yl)phosphine, is researched, Molecular C30H21P, CAS is 3411-48-1, about Palladium-Catalyzed Cross-Coupling of N-Sulfonylaziridines with Boronic Acids. Author is Duda, Megan L.; Michael, Forrest E..
A mild palladium-catalyzed cross-coupling of unsubstituted and 2-alkyl-substituted aziridines with arylboronic acid nucleophiles is presented. The reaction is highly regioselective and compatible with diverse functionality. A catalytic amount of base, a sterically demanding triarylphosphine ligand, and a phenol additive are critical to the success of the reaction. Coupling of a deuterium-labeled substrate established that ring opening of the aziridine occurs with inversion of stereochem.
There is still a lot of research devoted to this compound(SMILES:C1=CC2=C(C=C1)C(=CC=C2)P(C1=CC=CC2=C1C=CC=C2)C1=CC=CC2=C1C=CC=C2)Reference of Tri(naphthalen-1-yl)phosphine, and with the development of science, more effects of this compound(3411-48-1) can be discovered.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis