Simple exploration of 108-47-4

Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 108-47-4

Application of 108-47-4, Chemistry involves the study of all things chemical – chemical processes, chemical compositions and chemical manipulation – in order to better understand the way in which materials are structured, how they change and how they react in certain situations. 108-47-4, Name is 2,4-Dimethylpyridine, molecular formula is C7H9N. In a article,once mentioned of 108-47-4

Me groups on nitrogenous heterocycles can be conveniently metallated by a variety of strongly basic reagents to afford synthetically useful carbanions.The negative charge of such anions resides predominantly on the ring N atoms.The site of lithiation on pyridines and quinolines bearing Me groups in both the 2- and 4-positions depends upon the ability of the ring N atom to complex with the metallating agents.Carbanions derived from methylated pyridines, quinolines, naphthyridines, isoquinolines, pyrido<4,3-b>carbazoles, pteridines, pyrido<3,4-b>indoles and quinoxalines are discussed.References are provided describing condensations of these reagents with a variety of both common and uncommon electrophiles.

Because enzymes can increase reaction rates by enormous factors and tend to be very specific, they are the focus of active research. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 108-47-4

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis